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Abstract: The current study evaluated the impact of task-relevant emotion on inhibitory control while
focusing on midline cortical regions rather than brain asymmetry. Single-trial time-frequency analysis
of electroencephalography recordings linked with response execution and response inhibition was
done while thirty-four participants performed the emotion modulated stop-signal task. To evaluate
individual differences across decision-making processes involved in inhibitory control, a hierarchical
drift-diffusion model was used to fit data from Go-trials for each of the 34 participants. Response
threshold in the early processing stage for happy and disgust emotions could be distinguished from
the later processing stage at the mid-parietal and mid-frontal regions, respectively, by the single-trial
power increments in low frequency (delta and theta) bands. Beta desynchronization in the mid-
frontal region was specific for differentiating disgust from neutral emotion in the early as well as
later processing stages. The findings are interpreted based on the influence of emotional stimuli on
early perceptual processing originating as a bottom-up process in the mid-parietal region and later
proceeding to the mid-frontal region responsible for cognitive control processing, which resulted in
enhanced inhibitory performance. The results show the importance of mid-frontal and mid-parietal
regions in single-trial dynamics of inhibitory control processing.

Keywords: emotion; response inhibition; delta; theta; drift diffusion model

1. Introduction

We live in an ever-changing environment where rapid motor response and its inhibi-
tion play an important role in our survival [1,2]. This ability to implement goal-directed
behavior safely is critical; for example, we adjust our movements based on the traffic
sign before crossing the street [3]. Motor inhibition is studied in laboratory settings using
the stop-signal task (SST) [2] or the Go/NoGo task (GNGT) [4]. The primary objective
in a simplified GNGT or SST is a choice reaction task where participants must choose
between one of two options and press a button. In GNGT, a percentage of the go-stimulus
trials is randomly replaced by a no-go stimulus where the participants are asked not to
press a button. In SST some trials are randomly chosen when the Go-stimulus is followed
by a stop-stimulus wherein the participants are asked to withhold the ongoing motor
response. In short, GNGT is based on action restraint while the stop-signal task relies on
the action cancellation [5]. The key difference in GNGT and SST lies in the presentation
of the inhibition signal relative to the Go-stimulus (0 ms for the GNGT and ~300 ms for
the SST respectively) [6]. This leads to differences in their neural mechanisms leading to
motor inhibition. Functional magnetic resonance imaging (fMRI) studies on cognitively
healthy human participants highlight functional convergence of these tasks highlighting
recruitment of inferior frontal (IFC), (pre-) supplementary motor area (pre-SMA), and/or
insular cortex, dorsolateral prefrontal cortex (dfPFC), anterior cingulate cortex (ACC),
middle frontal cortex, and posterior parietal regions [7]. SST makes it possible to measure
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a behavioral index of stopping by calculating stop-signal reaction time (SSRT) from the
reaction time of go-trials and the delay in the stop signal stimulus presentation, referred
to as the stop-signal delay (SSD) [8]. This makes SST a more attractive paradigm than
GNGT to study motor inhibition in clinical settings since differences in SSRT can be used to
account for changes in attention and/or, emotion deficits.

The literature on response inhibition studies can be classified into two categories per
se—reactive and proactive inhibition [9,10]. Reactive inhibition is based on action cancella-
tion at the instant of stop signal stimulus presentation. Proactive inhibition necessitates
the expectation and planning to stop forthcoming actions when required [11–13]. This
anticipation of an approaching stimulus is crucial for goal-directed performance [14,15].
In a response inhibition task, the presence of a stop signal (proactive inhibition) leads to a
delay in go trials response as compared to the trials when a stop signal is absent [2,8,16].
Although the fundamental mechanisms by which proactive and reactive inhibition are
executed differently, the underlying brain circuitry is similar [17]. The lack of differences in
candidate brain regions makes it challenging to study the proactive inhibition [18]. Lately,
researchers have tried to study proactive control by measuring decision-making parameter
reaction time in Go trials using evidence accumulation models [19–22] and then relating
the values to stopping performance. Proactive inhibition has been studied by focusing
on the cognitive processes of the stimulus presented in Go-trials as opposed to those in
the Stop-trials which is usually done in reactive inhibition studies. This is because the
decision-making processes in stopping which determine SSRT can be influenced by the rate
of accumulation leading to a correct/incorrect response and the processing speed of the
Go-trial stimuli [19,21–23]. Unfortunately, information extracted from the Stop-trials only
like SSRT does not tell us anything about the events leading to stopping. In order to extend
our current understanding of the decision-making processes in response inhibition leading
to stopping, we concentrated on a popular mathematical model used by psychologists for
two-choice discrimination tasks called the drift-diffusion model to disentangle reaction
time data from SST into relevant decision-making cognitive components as executed in
prior studies.

The role of sensory processes has been validated by response inhibition studies in the
past [24] and it has been demonstrated in multiple reports that emotional processes take
priority to capture attention [25–28]. However, the role of sensory processes in emotion
modulated inhibition is still ambiguous. Some studies have suggested that emotions lead
to improvement in behavioral inhibition in SST as evident by shorter SSRTs in emotional
conditions as opposed to neutral condition [29–31]. Other studies have shown the opposite
trend, that is, emotions lead to impairment of behavioral inhibition as evident by longer
SSRTs in emotional conditions as opposed to neutral condition [32–36]. Such ambiguous
results pose difficulty in interpreting the role of emotion in response inhibition. However, a
psychological theory explaining cognitive–emotional interactions [26] helps throw light
into the ambiguity in the previous findings. This theory suggests that emotional states
can enhance or impair behavioral performance contingent upon their task relevance and
that the role of emotions in task performed plays an essential role in the interpretation of
the results. When emotions are task-irrelevant or serve as distractors, they lead to poor
behavioral performance since they capture attentional resources necessary for the task. On
the other hand, when emotions are task-relevant, they lead to improved task performance
since they do not compete for attentional resources reserved for cognition.

Previous SST studies based on human scalp electroencephalogram (EEG) studies
performing time-frequency analysis report significant enhancement of event-related syn-
chronization power in delta oscillation (1–4 Hz) or theta oscillation (4–8 Hz) bands at
frontocentral regions for successful motor inhibition [37]. In addition to this, low-frequency
delta/theta oscillatory power is also related to implicit and explicit emotional process-
ing [38]. These findings lead us to predict that low-frequency oscillatory power could play
a role in emotion-modulated response inhibition. In our previous report, we showed that
low-frequency oscillatory power (LFO; 2–6 Hz) could modulate the response threshold in



Symmetry 2022, 14, 1244 3 of 15

favor of emotional conditions relative to neutral conditions at a single-trial level [22]. Addi-
tionally, intracranial recordings in human patients [39] as well as multimodal MEG/fMRI
approach in healthy human subjects [40] suggest a possible role of beta synchronized power
in the right frontal brain regions (right inferior frontal gyrus (IFG)) in line with findings
from functional neuroimaging looking at successful inhibition processes. To summarize
the previous findings, LFO at middle frontal regions might explain cognitive control pro-
cesses in response inhibition while beta oscillatory power over the right IFG represents
task-specific inhibition in SST.

Speed–accuracy tradeoffs represent a fundamental aspect in cognitive conflict task
paradigms like Stroop task, Erikson-Flanker task, GNGT or the SST [41]. Electrophysiol-
ogy studies on LFO performed in the subthalamic nucleus (STN) (a candidate region for
response inhibition as well) suggest that prefrontal–STN connectivity is crucial for speed
accuracy tradeoff [42–45]. A recent EEG study in clinically healthy participants reported
that changes in cortical LFO power due to speed-accuracy tradeoff are mainly localized in
the medial prefrontal cortex (MPFC) [46]. Trial-by-trial changes in LFO power as measured
from Fz electrode were shown to be related with activations in MPFC as measured by fMRI.
Additionally, signal changes in Fz electrode using EEG and activations in MPFC using
fMRI were shown to correlate well with increase in decision thresholds for speed accuracy
tradeoff in the same study. These results align well with the notion of so called ‘indirect’
and ‘hyper-direct’ pathways for inhibition which recruits subregions of the basal ganglia,
thalamus, STN and MPFC [47–49]. Neurobiological models investigating speed–accuracy
tradeoffs focus on the basal ganglia and STN since these regions have a wide range of
structural and functional connections to cortical (including prefrontal and motor cortex)
and subcortical regions of the brain which are involved in decision-related processes [50].

Evidence accumulation models like the drift-diffusion model (DDM) and Linear bal-
listic accumulator (LBA) [51] belong to a class of formal computational models which
have been developed to fit the biologically plausible and experimentally robust manipu-
lations of cognition. Lately, these models have been shown to be useful in a task general
setting to study individual differences in clinical neuroscience [52]. By accounting for
individual differences, we will be able to make better inferences in psychopathology and
their causal links to neurobiology. The role of the emotional content in response inhibi-
tion is not clear [53] and we hope our findings will add on to this literature on evidence
accumulation studies.

A majority of EEG studies have focused on frontocentral N2 and P3 event-related
potentials (ERPs) for understanding reactive inhibition owing to the presence of both these
components in GNGT and SST [37,54,55]. In contrast, studies involving proactive inhibi-
tion have looked at trial-by-trial changes in inferoposterior N1, an earlier ERP component
believed to capture attention [20,21,56]. Task-relevant stopping led to smaller N1 ampli-
tudes for longer reaction times, indicating that proactive inhibition captures information
related to selective attentional processes [20] unlike being associated with global stopping
like the P3 component, as evaluated by reactive inhibition [57,58]. In order to obtain a
complete view of proactive inhibition, we added the mid-parietal region in addition to the
mid-frontal region to look at dynamic changes in the amplitude of the frequency spectrum
as a function of time from Go trials responsible for decision-making processes.

In this current study, the impact of task-relevant emotions in action cancellation
was investigated in more detail. We hypothesized that transient affective states would
enhance response inhibition both at behavioral as well as neural levels. We predicted that
emotional conditions would show shorter response times in go as well as stop trials. At the
neural level, we expected that lower frequency oscillatory activity in delta and theta band
could distinguish response threshold for emotional relative to neutral condition owing
to previous literature supporting evidence of delta/theta activity in emotional processes
and inhibitory control. Since emotion is better understood as a bottom-up process and
proactive studies in the past have focused on the inferoposterior N1 ERP component, so
we included the mid-parietal region in addition to the frontal scalp site to understand the
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role of emotion perception in response inhibition. In addition, we conducted exploratory
analyses in frontal and posterior regions to look at the role of beta oscillatory power in
motor inhibition. To relate oscillatory power with decision-making processes, we combined
single-trial oscillatory activity from the delta, theta, and beta frequency bands in frontal
and posterior scalp sites with drift-diffusion parameters obtained from Go-trials across
emotional (disgust/happy) and neutral conditions. Subsequently, we used within-subject
regression analysis to map out specific links between changes in trial-by-trial oscillatory
activity and emotional conditions.

2. Materials and Methods
2.1. Participants

Thirty-four young participants (9 females; mean age: 24.35 years; SD: 3.88 years)
were recruited for this experiment. All subjects were right-handed and had no previous
history of psychological or neurological disorders. All methods were carried out following
relevant guidelines and regulations with the Human Research Ethics Committee IRB on
Biomedical Science Research /IRB-BM Academia Sinica, Taiwan, based on the tenets of
the Declaration of Helsinki. All experimental protocols used in this study followed the
relevant guidelines imposed by the Human Research Ethics Committee IRB on Biomedical
Science Research/IRB-BM Academia Sinica, Taiwan. All subjects signed consent forms
in agreement with the Human Research Ethics Committee IRB on Biomedical Science
Research/IRB-BM Academia Sinica, Taiwan. None of the participants claimed to have
participated in a similar research study previously. One participant was removed due to a
lot of artifacts in the recording data. The results presented in the current article are from
the remaining 33 participants. Although a formal power analysis for the sample size was
not conducted for this study, the sample size used here was in line with other evidence
accumulation studies in the literature [19,43,59,60].

2.2. Material and Experimental Design

The experiment was performed in an echo-proof diffusely lit room wherein partici-
pants were asked to be seated at ease. Visual stimuli were depicted on a computer monitor
having dimensions of 24.4 × 18.3 cm positioned 60 cm in front of the participants. The
participants were given instructions to perform a series of choice reaction tasks while
electroencephalography was used for recording the electrical activity of their brains. The
overall experiment was based on an A-B-A-B block design. Block A used SST with disgust
and neutral faces as target images, while block B used happy and neutral faces. Participants
were switched between assignments of blocks A and B to nullify the bias in findings across
subjects. The experiment design is displayed in Figure 1.

Every trial commenced with a fixation cross for 500 ms, succeeded by the presentation
of an emotional face for 1000 ms and a blank screen which served as an inter-trial interval
(ITI). The ITI was jittered between 1–1.5 s. For the Go trials, subjects had to respond by
pressing a button on the keyboard within 1 s of the picture shown identifying the type of
face presented to them: happy, disgust, or neutral. Participants had to press the “Z” or “M”
buttons on the keyboard for correct recognition of emotional or neutral faces respectively. In
approximately 28% of the trials, the Go trial was followed by a red border around the same
stimulus to act as a stop trial. The red border’s latency was jittered in accordance with the
participant’s task performance in the current trial for making the stop trials unpredictable.
The participants were instructed to press a previously assigned response button on the
keyboard (“Z” or “M”) as soon as they could without worrying too much about making
errors in stop trials. The stop-signal delay (SSD) was set to 250 ms initially. The SSD on
the succeeding stop trial was reduced by 50 ms to make it easier on participants if they
were incapable of stopping successfully in the current stop trial. On the contrary, the SSD
was increased by 50 ms on the succeeding stop trial to make it harder for the participant
to stop his/her ongoing motor movements if they were capable of stopping successfully
in the current stop trial. This was to ensure that the hit rate in the stop trials would hover
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around the 50% mark. The trials were equally divided among two emotion conditions—
happy/disgust faces and neutral faces trials. In total, participants were presented with
100 Go trials and 40 Stop trials for every emotion category respectively spanning two
blocks. The emotional faces were chosen from a Taiwanese face database [61] to prevent
conclusions on a cultural bias of the faces presented to participants. The closed-mouth
images were used for disgusting, happy, and neutral trials. The emotional SST design
used in the current study was adapted from a previously published functional magnetic
resonance imaging (fMRI) research [30]. All the faces chosen were grey scaled to a particular
size (506 × 650 pixels; 96 dpi) and oval masked with a black background to prevent the
impact of spatial properties. This was done to prevent bottom-up stimulus-driven biases
for the participant’s button presses.

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

ms initially. The SSD on the succeeding stop trial was reduced by 50 ms to make it easier 
on participants if they were incapable of stopping successfully in the current stop trial. On 
the contrary, the SSD was increased by 50 ms on the succeeding stop trial to make it harder 
for the participant to stop his/her ongoing motor movements if they were capable of stop-
ping successfully in the current stop trial. This was to ensure that the hit rate in the stop 
trials would hover around the 50% mark. The trials were equally divided among two 
emotion conditions—happy/disgust faces and neutral faces trials. In total, participants 
were presented with 100 Go trials and 40 Stop trials for every emotion category respec-
tively spanning two blocks. The emotional faces were chosen from a Taiwanese face da-
tabase [61] to prevent conclusions on a cultural bias of the faces presented to participants. 
The closed-mouth images were used for disgusting, happy, and neutral trials. The emo-
tional SST design used in the current study was adapted from a previously published 
functional magnetic resonance imaging (fMRI) research [30]. All the faces chosen were 
grey scaled to a particular size (506 × 650 pixels; 96 dpi) and oval masked with a black 
background to prevent the impact of spatial properties. This was done to prevent bottom-
up stimulus-driven biases for the participant’s button presses. 

 
Figure 1. Study design for the emotional stop-signal task used in the current study. Participants 
were asked to respond to emotional faces as quickly as possible without using any inherent strategy 
to obtain a correct response. The faces were morphed with a grey border to signal as a Go-trial. On 
some trials, the grey border changed to red border to signal as a stop signal. Participants were in-
structed to try to inhibit their response upon seeing the stop signal. Initial stop-signal delay (SSD) 
was set to 250 ms. 

2.3. Data Collection and Analyses 
2.3.1. EEG Recording 

Electroencephalography (EEG) recording was performed by placing 128 Ag/AgCl 
electrodes on the participant’s scalp. This included six facial electrodes. The reference was 
placed in between the Fz and Cz electrode sites based on the 10–20 electrode system. Three 
electrodes were placed around both eyes in order to control eye movements during the 
scan. The changes in heart rate were accessed by placing an electrode near the index finger 
of both hands. The data obtained from eye movements and heart rate electrodes were 
regressed out as covariates in subsequent analysis. To ensure good SNR, electrode imped-
ances were kept below 20 kΩ throughout the experiment. The EEG signals were amplified 
using Neuroscan amplifiers having an analog bandpass of 0.1–100 Hz. The sampling fre-
quency used was 1000 Hz. 

  

Figure 1. Study design for the emotional stop-signal task used in the current study. Participants were
asked to respond to emotional faces as quickly as possible without using any inherent strategy to
obtain a correct response. The faces were morphed with a grey border to signal as a Go-trial. On some
trials, the grey border changed to red border to signal as a stop signal. Participants were instructed to
try to inhibit their response upon seeing the stop signal. Initial stop-signal delay (SSD) was set to
250 ms.

2.3. Data Collection and Analyses
2.3.1. EEG Recording

Electroencephalography (EEG) recording was performed by placing 128 Ag/AgCl
electrodes on the participant’s scalp. This included six facial electrodes. The reference
was placed in between the Fz and Cz electrode sites based on the 10–20 electrode system.
Three electrodes were placed around both eyes in order to control eye movements during
the scan. The changes in heart rate were accessed by placing an electrode near the index
finger of both hands. The data obtained from eye movements and heart rate electrodes
were regressed out as covariates in subsequent analysis. To ensure good SNR, electrode
impedances were kept below 20 kΩ throughout the experiment. The EEG signals were
amplified using Neuroscan amplifiers having an analog bandpass of 0.1–100 Hz. The
sampling frequency used was 1000 Hz.
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2.3.2. EEG Analysis

Time-domain analyses were carried out using EEGLAB Version 14.1.2b [62], an open-
source toolbox running under MATLAB environment. Custom written scripts were used
to remove bad channels and epochs after setting a baseline of 200 ms (200 ms before
picture showing for Go trials was used for baseline calculation for Go and Stop trials).
Baseline correction was done for disgust/happy and neutral emotions across Go and Stop
conditions separately. Artifacts were removed by performing the independent component
analysis (ICA) on all trials for each subject individually. The overall clean data resulted
in 85 successful Go trials and 24 successful Stop trials on average across three emotion
conditions. Bandpass filtering was done between 1 to 50 Hz to avoid spectral contamination
of EEG data from a line frequency of 60 Hz. Epoch length was restricted to 2700 ms for
each trial, including 1200 ms before picture showing and 1500 ms after post-stimulus onset.
Trials in the “Go” and “Stop” condition having missing values or trials with peak-to-peak
amplitude differences of more than 100 µV were excluded from the analysis.

Event-related spectral perturbations (ERSPs) at the single-trial level [63] were calcu-
lated using the pop_newtimef function by including 2700 ms of filtered epoch data (including
1200 ms before picture showing). The data from 33 participants were averaged to generate
group-level ERSP. In line with previous studies [22,45], data from the Fz electrode scalp
site was used to proxy the mid-frontal region. In a similar vein, data from the Pz electrode
scalp site was used to proxy the mid-parietal region. Go- and Stop-signal ERSPs were
calculated independently for each category of emotion condition: disgust, happy and
neutral, all adjusted to the 200 ms baseline defined in the pre-stimulus period. We extracted
200 frequencies spanning from 1.0 to 50.0 Hz in the linear scale and used a fixed window
size of 256 ms (256 samples). ERSP results were analyzed for three different frequency
bands (delta (1–4 Hz), theta (4–8 Hz), and beta (15–30 Hz)) and two-time windows (early
(0–300 ms) and late (300–600 ms)) respectively. The time windows were chosen to keep the
values of SSRT (~ 320 ms) and average Go-trial reaction time (~675 ms) in mind. These
time windows overlap well with the time windows occupied by the prominent ERP and
components N2/P3 used in the inhibition literature [37,64]. In addition, time windows
used for delta/theta frequency bands by the few ERSP studies on response inhibition also
overlap with the time windows we have chosen for analysis in the current study. We
calculated single-trial ERSP also by the pop_newtimef function. The baseline for single trials
was set from −200 to 0 ms prior to stimulus onset and single-trial stimulus-locked ERSP
was estimated separately for delta, theta, and beta frequency bands by subtracting this
information from the relevant trials in each condition. The single-trial ERSPs were nor-
malized for theta, delta, and beta frequency bands separately by dividing their respective
baseline power values in each trial. This approach has been shown to provide more robust
estimates for the single-trial power [63].

2.3.3. Hierarchical Drift Diffusion Model (HDDM) Analysis

Trial-by-trial dynamics of decision-making components as given by the drift-diffusion
model (DDM) [65], we used the hierarchical drift-diffusion model package version 0.6.0
(HDDM) [66] which used Bayesian estimation for modeling DDM parameters. Go trial
reaction times (Go RTs) were used as done so in previous articles using DDM analysis [19,23]
for SST across happy, disgust, and neutral conditions. There were two possible responses for
successful or failed emotion recognition (here, we choose accuracy coding where 1 means
the subject successfully identified the correct emotional facial expression, and 0 means the
subject pressed the incorrect button). Model comparison was done using the deviance
information criterion (DIC). A combination of the three DDM parameters—level of response
caution (response threshold, a), evidence accumulation (drift rate, v), and time needed for
non-decision processes (non-decision time, t0) was used to define three models in order
to determine the impact of visual affect (happy, disgust or neutral) on choice RT obtained
by Go trials. First, a set of stimulus-varying models were inspected by varying two or
more DDM parameters across different stimulus conditions (Disgust stimulus, DS; Happy
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stimulus, HS; and Neutral stimulus, NS). After that, two regression models were used to
capture dynamics in low frequency oscillatory and beta power varying with trial-by-trial
reaction time. The regression coefficients for mid-frontal and mid-parietal activity decision
thresholds were further used to determine the decision-making parameters themselves in
the same model. The response threshold, a in a given trial was defined as follows

a = b0 + b1 delta ∗ Stim + b2 theta ∗ Stim + b3 beta ∗ Stim,

where, Stim indicates the type of stimulus used (DS, HS, or NS), delta/theta refers to the
post-stimulus increment in the power of the delta/theta frequency bands, beta refers to the
post-stimulus decline in the power of the beta frequency band, and b1−3 are the estimated
regression coefficients. Further modeling details have been explained in Appendix A.

HDDM uses a Markov chain Monte Carlo (MCMC) to obtain a sequence of samples
from the posterior of each parameter for each model. We generated 10,000 samples from
the posteriors for model convergence for all models used in the current study. The first
2000 samples were thrown out as “burn-in” to ensure that the MCMC samples used came
from a stationary distribution. The readers are referred to the other references [19,23] for
further modeling details. We discarded 5% of the data to prevent outliers, assuming that
the DDM process might not generate 5% of the data but instead by attentional lapses.
Posterior probabilities of the DDM parameters having values greater than or equal to 95%
different from zero were considered as significant [43]. Model comparison was based on
the deviance information criterion (DIC) values. A model is considered to be significantly
different from models if the difference in DIC values is greater than 10 [43].

2.3.4. Statistical Analysis

The median RT values for the Go trials were calculated across each emotion condition
separately after excluding the error trials. SSRT was estimated for the disgust, happy and
neutral emotion conditions separately after accounting for the Go-trial omissions using the
integration method [16]. Paired t-test analyses were used to test how emotion modulated
behavioral performance in go and stop trials. For the ERSP analysis, repeated-measures
ANOVA was used to test how emotion modulated neural activity in delta, theta, and beta
oscillatory bands across mid-frontal and mid-parietal scalp sites.

3. Results
3.1. Behavioral Results

The behavioral results showed that participants made faster responses to disgust (t
(32) = −2.646, p = 0.013) and happy (t (31) = −3.696, p = 0.001) conditions relative to neutral
condition in Go trial reaction times (RTs). The same trend was seen in Stop trials (Stop
signal reaction times, SSRTs) for the disgust (t (32) = −2.004, p = 0.054) as well as happy (t
(31) = −2.747, p = 0.010) condition relative to the neutral condition. The behavioral results
are presented in Table 1.

Table 1. Mean and standard deviation of reaction time in Go and Stop trials for the negative and
positive block.

Go Reaction Time (RT) Stop Signal Reaction Time (SSRT)

Negative block
Disgust 672.5 ± 99.3 313.7 ± 56.6
Neutral 689.7 ± 95.0 327.8 ± 55.1

Positive block
Happy 662.5 ± 110.0 309.9 ± 59.7
Neutral 680.2 ± 99.1 321.8 ± 49.41

Reaction times in milliseconds are given by M ± SD.
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3.2. Linking DDM Parameters with Behavior Data

The best-fitting model parameters were used to probe into the neural oscillatory
processes involved in emotion modulation of inhibitory control. To understand how
well the model parameters fit the behavioral results in go and stop trials, we present
correlation matrices in Tables 2 and 3 for disgust and happy emotion block, respectively.
The DDM parameters derived from Go trials (as denoted by DDM_a, DDM_v, DDM_t0
for response threshold, drift rate, and non-decision time components, respectively) were
well correlated with behavioral measures derived from go and stop trials, suggesting that
indirect inferences can be made on inhibitory control using information derived from Go
trials only.

Table 2. Correlation matrix for behavioral measures in disgust block.

Disgust Go
DDM_a

Neutral Go
DDM_a

Disgust Go
DDM_v

Neutral Go
DDM_v

Disgust Go
DDM_t0

Neutral Go
DDM_t0

Disgust Go
RT

Correlation 0.872 ** 0.814 ** −0.671 ** −0.534 ** 0.517 ** 0.405 *
Sig. (2-tailed) 0.000 0.000 0.000 0.001 0.002 0.019

Neutral Go
RT

Correlation 0.749 ** 0.824 ** −0.700 ** −0.609 ** 0.409 * 0.451 **
Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.018 0.008

Disgust Stop
SSRT

Correlation 0.762 ** 0.641 ** −0.670 ** −0.472 ** 0.274 0.319
Sig. (2-tailed) 0.000 0.000 0.000 0.006 0.123 0.070

Neutral Stop
SSRT

Correlation 0.364 * 0.498 ** −0.640 ** −0.511 ** −0.037 0.245
Sig. (2-tailed) 0.037 0.003 0.000 0.002 0.839 0.169

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

Table 3. Correlation matrix for behavioral measures in happy block.

Happy Go
DDM_a

Neutral Go
DDM_a

Happy Go
DDM_v

Neutral Go
DDM_v

Happy Go
DDM_t0

Neutral Go
DDM_t0

Happy Go
RT

Correlation 0.929 ** 0.892 ** −0.329 −0.570 ** 0.628 ** 0.475 **
Sig. (2-tailed) 0.000 0.000 0.066 0.001 0.000 0.006

Neutral Go
RT

Correlation 0.894 ** 0.922 ** −0.311 −0.551 ** 0.635 ** 0.550 **
Sig. (2-tailed) 0.000 0.000 0.083 0.001 0.000 0.001

Happy Stop
SSRT

Correlation 0.686 ** 0.713 ** −0.413 * −0.576 ** 0.415 * 0.242
Sig. (2-tailed) 0.000 0.000 0.019 0.001 0.018 0.181

Neutral Stop
SSRT

Correlation 0.564 ** 0.668 ** −0.349 * −0.496 ** 0.368 * 0.313
Sig. (2-tailed) 0.001 0.000 0.050 0.004 0.038 0.081

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

3.3. Exploring Trial-by-Trial Regression Analysis of ERSP Data with DDM Parameters

To understand the link between trial-by-trial variations in oscillatory activity and
DDM parameters, we ran regression analyses using the HDDM package. For the early
time window (0–300 ms), trial-by-trial variations in beta power from the mid-frontal
region decreased the estimated response threshold for disgust (98% posterior probability)
(Figure 2a) and happy (96% posterior probability) (Figure 2b) emotion as opposed to
neutral emotion. The same effect failed to reach significance for theta or delta power.
For the mid-parietal region, trial-by-trial changes in delta power increased the estimated
response threshold parameter for disgust (97% posterior probability) (Figure 2c) and happy
(96% posterior probability) (Figure 2d) emotion as opposed to neutral emotion. In addition,
changes in theta (100% posterior probability) (Figure 2d) as well as beta (100% posterior
probability) (Figure 2d) power from the mid-parietal for happy emotion, as opposed to the
neutral emotion, affected the response threshold parameter.
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Figure 2. Single-trial ERSP associated with delta, theta, and beta power for disgust, happy and
neutral stimuli in the early time stage (0–300 ms). In the figures on the left (a,c), posterior probability
density reflects the decision threshold increase for disgust relative to the neutral context in mid-frontal
and mid-parietal regions, respectively. In the figures on the right (b,d), posterior probability density
reflects the decision threshold increase for the happy relative to the neutral context in mid-frontal
and mid-parietal regions respectively.

We also ran exploratory analyses in the later time window (300–600 ms). Trial-by-
trial variations in delta and theta power from the mid-frontal region affected the esti-
mated response threshold for disgust (95% posterior probability; 98% posterior probability)
(Figure 3a) and happy (100% posterior probability; 100% posterior probability) (Figure 3b)
emotion relative to neutral emotion. In addition, changes in beta (96% posterior probability)
power from the mid-frontal region affected the response threshold parameter for disgust
emotion as opposed to neutral emotion. For the mid-parietal region, changes in delta and
theta power affected the estimated response threshold for happy (99% posterior probability;
97% posterior probability) (Figure 3d) emotion relative to neutral emotion. No such effects
were observed for disgust compared to neutral emotion (Figure 3c).
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Figure 3. Single-trial ERSP associated with delta, theta, and beta power for disgust, happy and
neutral stimuli in the later processing stage (300–600 ms). In the figures on the left (a,c), posterior
probability density reflects the decision threshold increase for disgust relative to the neutral context
in mid-frontal and mid-parietal regions respectively. In the figures on the right (b,d), posterior
probability density reflects the decision threshold increase for happy relative to the neutral context in
mid-frontal and mid-parietal regions respectively.
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4. Discussion

The present study examined the impact of task-relevant emotions in inhibitory control
at the behavioral and neural levels. We found that oscillatory dynamics derived from
single-trial EEG recordings predicted transient emotional states in emotion modulated
response inhibition tasks. Emotional faces were associated with faster response times in
both go and stop trials relative to neutral faces, suggesting that task-relevant emotion
improved response inhibition [30]. A recent study [67] has shown that positive emotion
enhances response inhibition in the elderly when emotion is task-relevant. The current
study showed that both positive and negative emotion could enhance response inhibition
when emotion is task-relevant, as evidenced by shorter SSRTs in emotional conditions
relative to neutral conditions, confirming our hypothesis in line with the dual competition
framework [26]. In addition, the behavioral data support a previous report investigating
cognitive-emotional interactions in response inhibition showing faster responses for happy
and fearful trials as compared to neutral trials [29].

The current results extend the findings from our previous study [22], wherein we
sought to establish the role of low-frequency oscillatory power in emotion modulated
response inhibition. Here, we showed that trial-by-trial changes in delta power modulated
response threshold in favor of happy and disgust affect compared to neutral affect in the
early time window at the mid-parietal region but not the mid-frontal region. However, in
the later time window, trial-by-trial changes in delta and theta power helped enhance the
happy and disgust affect compared to neutral affect at mid-frontal but not mid-parietal
regions. This extends previous reports on the role of delta and theta oscillations in implicit
and explicit emotion recognition [38]. Previous studies have associated an escalation in
delta and theta synchronizations at the mid-frontal region with the inhibitory control [37].
The results from the current study replicate this effect. In addition, the results show
that cognitive changes associated with delta and theta power are better understood with
different temporal processing stages. Emotion perception can be understood by bottom-
up processes manifesting in the mid-parietal region (from stimulus showing to under
300 ms after picture showing) and later in the mid-frontal region (after 300 ms after picture
showing) [68]. The results hold relevance for the emotion modulated stopping process since
the SSD measured in the current study was around 300 ms for disgust and happy emotion.
We suggest that the trial-by-trial enhancements in delta/theta power obtained in the mid-
frontal region after 300 ms post-stimulus presentation reflect cognitive control processes
associated with decision-making processes since, the mean RT in Go trials was around
700 ms in the current study. The latency of the time windows for these findings are in line
with a recent study which analyzes the role of right IFG in response inhibition initiation and
stopping performance (mean of successful stop SSD was 288 ms and stopping performance
was analyzed from a window of 100–350 ms from Stop stimulus presentation) [40].

Response threshold was positively correlated with Go RT and SSRT, suggesting that speed-
accuracy tradeoff in Go trials could be linked with better inhibitory performance [19,21,23]
across disgust, happy and neutral emotions. Interestingly, subjects whose Go trials were
marked with a more substantial drift rate also had shorter SSRTs for disgust, happy and neutral
emotions, suggesting that they were better at inhibiting their responses. A previous SST study
also obtained similar results on the drift rate and response threshold parameters [23]. The
non-decision parameter mainly reflects individual differences in motor execution and periods of
inattention before attending a stimulus, so finding no significant correlations with this parameter
and SSRT measures was expected as in previous studies. A significant correlation between
SSRT derived from happy and neutral stop trials and non-decision parameters derived from the
happy Go trial was obtained, which was unexpected. We reason that happy affect might be
similar to the neutral affect shown for many participants so inattention in this emotion category
was related to the behavioral inhibition!

Increased decision thresholds were observed for emotional relative to the neutral
condition associated with trial-by-trial variations in delta and theta power over the mid-
frontal region. A well-established finding for LFO power increase in STN is commonly
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observed in electrophysiology studies and it is shown to be related to the prefrontal–STN
connectivity [42,46]. The mid-frontal region has structural and functional connections to the
STN as demonstrated in previous studies [47,48]. The prefrontal cortex intensifies its impact
over the STN with an increase in task complexity resulting in longer decision thresholds
for response. The emotion modulated motor inhibition task used in this study can be
visualized as an adaptive speed–accuracy tradeoff task since participants were required
to focus on responding as quickly as possible to the salient emotional stimuli as part of
their instructions without thinking much about the accuracy of their responses. To sum
up, it would be too impulsive to conclude that cortical LFO changes from EEG scalp-based
studies follow a simple one-to-one mapping; since LFO activity over the PFC has been
associated with several other cognitive processes, including novelty, error, punishment,
emotional reactivity, learning, and memory [44,69].

A recent study attributes improved stopping performance to an increase in beta
oscillatory power initiated from the right IFG [40]. We found that trial-by-trial beta power
could differentiate disgust emotion from neutral emotion in the midfrontal region in the
early as well as late time window (0~600 ms). This could imply a generalized role for beta
oscillations in the inhibitory control task. Based on the findings observed in the current
study, one might infer that the variations in beta power in the early processing stage at
mid-frontal regions are crucial for differentiating disgust and happy emotion compared
to neutral emotion. These results fit well with the findings of emotional faces capturing
additional attentional resources [25,27], and changes in the beta frequency band might help
better understand them. However, inconsistencies in the variations of beta power in happy
and disgust emotions for early and later processing stages make it hard for us to conclude
the role of beta oscillations in emotional inhibition at a trial-by-trial level. Future reports
could look at interactions between LFO and beta power in the mid-frontal region to better
understand the role of single-trial beta oscillations in cognitive control tasks.

The study has a few limitations. Firstly, DDM is not the only approach to model SST.
Usage of DDM in response inhibition must be evaluated carefully in realistic experiment
designs as concluded by experts in the field [70]. Alternative methods like the dynamic
models of choice (DMC) [51] allow more flexibility with a hands-on approach concerning
the models used. However, DMC’s implementation is not straightforward, and it can be
a little demanding for the end-user. Secondly, the current study only focused on happy
and disgusted faces. So, the results are not generalizable to other emotion categories and
thus must be interpreted with caution in the future. Finally, we demonstrated trial-by-trial
changes from only two regions owing to computational and time constraints on the model
convergence. Although the use of only two sensors seems somewhat biased and an average
of electrodes around the aforementioned electrode sites (Fz and Pz) would seem to improve
the generalizability of the findings, previous EEG literature from normal healthy subjects
and Parkinson patients [43,71] have reported findings from these electrode sites and we
were merely trying to replicate the findings for response inhibition. In particular, the finding
of theta power for FCz/Fz electrode is robust so it was used for lower frequency oscillations.
Future studies are recommended to extend this framework to the rest of the brain and use
a standard atlas in MNI space to explain emotion modulated response inhibition in a better
manner by considering brain’s asymmetry as well.

5. Conclusions

In summary, the results provide insight into the relationship between decision-making
components and oscillatory activity underlying task-relevant emotions in response inhibi-
tion. The results show that the response threshold parameter is associated with changes
in delta power over occipital regions in the early perceptual window and with delta and
theta power over the frontal region in the later processing stage. These findings highlight a
close relationship between inhibitory processing and response threshold at the neural level
in frontal and parietal regions. The model-based approach offers a crucial understanding
of the interactions between decision-making components involved in inhibitory control.
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Although we focused on midline regions, the interaction of inhibitory control processes
with sensory stimulations (visual/auditory) involves several cognitive processes that are
based on brain asymmetry and need to be dealt with care. It raises thought-provoking
inquiries about strategic modifications in inhibitory performance coupled with neuropsy-
chiatric ailments like attention deficit hyperactivity disorder (ADHD), Parkinson’s disease,
and obsessive-compulsive disorder (OCD). A recent review [52] on usage of evidence
accumulation models as a tool to measure cognitive differences in clinical neuroscience has
been proposed which extends the discussions in the current article.
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Appendix A

We provide some HDDM modelling details to help explain how posteriors relative to
neutral condition were modelled in the model shown in the main text.

(1) For the within-subject regression model of behavior data, the model used was

model = hddm.HDDMRegressor(data, {“a ∼ C(stim, Treatment(‘NS′))”,
“v ∼ C(stim, Treatment(‘NS′))”, ”t ∼ C (stim, Treatment(‘NS′))”},

p_outlier = 0.05)

(2) For the neural regression models, the model used was

model = hddm.HDDMRegressor(data, {“a ∼ C(stim, Treatment(‘NS′))
+ersp_theta + ersp_theta : C(stim, Treatment(‘NS′)) + ersp_delta

+ersp_delta : C(stim, Treatment(‘NS′)) + ersp_beta
+ersp_beta : C(stim, Treatment(‘NS′))”},

p_outlier = 0.05)

Here, C (stim, Treatment(‘NS’) was used to model the posteriors for happy and disgust
stimuli against the neutral stimuli in both the models.
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