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ABSTRACT 
 

Resting-state heart rate variability (HRV) has been proposed as a 
predictor of behavioral and cognitive responses in various experimental 
tasks. Specifically, high resting-state HRV has been associated with 
enhanced cognitive control in tasks requiring working memory, voluntary 
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attention, and inhibitory control. HRV can be analyzed in the time-domain 
as well as frequency-domain using linear or non-linear indices. The 
resting-state condition has been operationally defined as relaxing quietly 
with eyes-closed or eyes-open. Differences among HRV indices and the 
definition of resting states tend to undermine efforts to link resting-state 
HRV and performance in cognitive control tasks in terms of predictive 
ability and consistency. In the current study, we examined the latent 
structures underlying short-term HRV indices in a sample of 96 young 
adults (43 women; average age 25.69 ± 4.32) under 4-min eyes-closed 
followed by 4-min eyes-open resting-state conditions. Electrocardiograms 
(ECGs) recorded during the two resting-state conditions were then 
analyzed using a variety of HRV indices, of which latent structures were 
identified using principal component analysis. Our results revealed that 
time-domain indices were robust to resting-state conditions and provided 
clear measurements within a single dimension, whereas frequency-domain 
and non-linear indices measured different dimensions according to whether 
the participant was relaxing with eyes-closed or eyes-open. Participants 
also completed questionnaires pertaining to state-trait anxiety, self-
referential thoughts, and behavioral inhibition/activation before/after 
obtaining the resting-state ECG recordings. The HRV dimensions differed 
in the way they related to scores obtained on these psychological scales. 
The latent dimensions that were strongly associated with non-linear HRV 
indices were better predictors of scale scores, compared to dimensions that 
were more strongly associated with indices in the time-domain and 
frequency-domain. Our results have suggested that short-term resting-state 
HRV indices measure different aspects of physiological and psychological 
states in human participants. It appears that latent dimensions of short-term 
resting-state HRV indices may be used as regressors to predict cognitive, 
affective, and behavioral responses in experimental tasks. 
 

Keywords: behavioral inhibition system, heart rate variability, resting-state 
conditions, self-referential thoughts 
 
 

INTRODUCTION 
 
Heart rate variability (HRV) refers to the variations in successive inter-

beat intervals within electrocardiogram (ECG) time series, which can be 
considered as a physiological index for monitoring autonomic activity 
(Camm et al. 1996; Acharya et al. 2006). HRV indices have been used as 
markers for cardiac vagal activity in human participants under various 
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psychological conditions such as social engagement (Kemp et al. 2012), the 
perception of affective stimuli (Park, Van Bavel, et al. 2013; Park and 
Thayer 2014), and emotion regulations (Williams et al. 2015). These indices 
can also be used to predict affective instability in daily life (Koval et al. 
2013). Previous studies have treated resting-state HRV as a 
psychophysiological phenomenon characterizing the degree of vagal 
activity prevailing over sympathetic activity (Thayer et al. 2012; Thayer et 
al. 2009). High resting-state HRV is accompanied by enhanced cognitive 
control over tasks requiring working memory, selective attention, or 
inhibitory control (Hansen et al. 2004; Hovland et al. 2012; Park, Vasey, et 
al. 2013; Colzato et al. 2018). Research has shown that chronic reductions 
in vagal activity are associated with poor physiological, emotional, cognitive, 
and behavioral regulations, which can result in low self-rated health (Alvares 
et al. 2013; Jarczok et al. 2015; Thayer et al. 2012; Thayer et al. 2009) and 
a high risk of psychopathology (Beauchaine and Thayer 2015; Kemp et al. 
2010; Koenig, Kemp, Feeling, et al. 2016; Koenig, Kemp, Beauchaine, et al. 
2016; Clamor et al. 2016). Overall, HRV is associated with a wide range of 
psychophysiological functions related to general well-being in humans. 

HRV analysis has been recommended for long-term (24-hr) as well as 
short-term (5-min) recording procedures (Camm et al. 1996). While 24-hr 
HRV analysis is helpful for increasing resolution in the frequency-domain 
and particularly in the low frequency range, it is difficult to be implemented 
in typical volunteers. The short-term ECG recording procedure is more 
practical than the long-term procedure, offering a number of notable 
advantages: (i) relative ease in recording, (ii) convenience in controlling 
confounding factors, such as variations in the physical or mental states of 
experimental participants and in the recording environments, (iii) 
computational efficiency in data processing, and (iv) flexibility in 
visualizing dynamic changes in HRV within a short period of time (Li, 
Rüdiger, and Ziemssen 2019). Short-term and long-term HRV recordings 
have both been widely used in clinical settings. One factor that is commonly 
overlooked is the “set point” (or resting baseline) of normal HRV, which is 
itself regulated by the body’s negative feedback mechanism to maintain 
homeostasis (Zhang 2007). Crucially, the set point is not changed by short-
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term fluctuations in the heart rate other than trauma (Antelmi et al. 2004; 
Tuomainen et al. 2005). In this chapter, we focus on short-term HRV indices 
which are independent of the influence of day-to-day activity, a factor that 
may crucially affect the validity of long-term recordings.  

Few ECG studies have clearly specified eyes-closed or eyes-open 
conditions as the resting-state baseline in HRV measurements. One previous 
study reported that the high-frequency (HF) power was higher under the 
eyes-closed resting state than under the eyes-open resting state (Amin et al. 
2013). That study also reported that the low-frequency (LF) power and 
LF/HF ratio were higher under eyes-open than under eyes-closed conditions. 
We reported similar findings in terms of HF, LF, and LF/HF ratio expressed 
in normalized units (Liou et al. 2018). The HF power has conventionally 
been used as an index for parasympathetic (i.e., vagal) dominance, whereas 
the LF power and LF/HF ratio are used as indices for sympathetic 
dominance (Camm et al. 1996; Acharya et al. 2006). Another study 
compared the effect of eyes-closed and eyes-open resting states on mental 
fatigue by obtaining ECG readings before and after assigned tasks (Mizuno 
et al. 2014). The authors reported no variations in sympathetic or 
parasympathetic sinus modulation during the pre-task rest period under 
eyes-open or eyes-closed conditions. Nonetheless, the authors reported that 
during the post-task rest period, sympathetic nerve activity was higher and 
parasympathetic nerve activity was lower under eyes-open than under eyes-
closed conditions. This difference was attributed to variability in attentional 
levels associated with the two conditions, wherein sympathetic nerve 
activity was thought to be higher under the eyes-open condition than under 
the eyes-closed condition (Hori et al. 2005). Thus, it is possible that the eyes-
closed resting-state (baseline) condition could be used as a proxy for 
parasympathetic activity, whereas the eyes-open resting-state (baseline) 
condition could be used as a proxy for sympathetic activity. Those studies 
have provided preliminary evidence that results obtained under eyes-open 
and eyes-closed conditions should be analyzed separately; that is, they 
should not be combined for resting-state analysis.  

According to a recent report, cardiovascular diseases (CVDs) are among 
the leading causes of death worldwide for men and women (Mozaffarian et 
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al. 2015). However, the onset of CVDs affects the health of men and women 
differently, with the result that the prevalence of CVD-related mortality and 
morbidity is higher and tends to occur earlier in men (Berry et al. 2012; 
Mikkola et al. 2013). One recent meta-analysis on gender differences 
(Koenig and Thayer 2016) in HRV among healthy controls (10-74 years) 
revealed several interesting findings. In time-domain HRV indices, the mean 
RR interval and standard deviation of RR intervals (SDNN) were 
significantly lower among women on the average. The spectral power 
density of HRV was characterized, on the average, by a significantly lower 
total power, a significantly higher HF power and a significantly lower LF 
power. These effects were also manifested as the lower LF/HF ratio. Overall, 
women showed greater vagal activity, as indexed by higher HF powers in 
HRV readings. The authors concluded that the autonomic control of female 
hearts is dominated by parasympathetic activity (in spite of the higher mean 
heart rate), whereas male hearts are dominated by sympathetic activity (in 
spite of the lower mean heart rate). The heart rates (HRs) of women are 
generally higher than those of men; however, their risk of CVDs is not higher 
(Cordero and Alegria 2006). Thus, it appears that the HR does not have the 
same predictive power for mortality and morbidity in women as it does in 
men (Sacha 2014). This paradoxical situation warrants additional research 
involving the analysis of gender differences in the autonomic control of the 
heart, as indexed by HRV.  

In the past three decades, there have been a number of independent 
reports on the age influence on short-term HRV recordings (Migliaro et al. 
2001; Schwartz, Gibb, and Tran 1991; Zhang 2007; Antelmi et al. 2004). It 
appears that time-domain HRV indices, such as SDNN, root mean square of 
successive RR differences (RMSSD), and the proportion of successive RR 
intervals that differ by more than 50-ms (pNN50), consistently decrease with 
age, whereas the mean RR interval increases with age. Among the 
frequency-domain indices, it appears that HF, LF, and very-low-frequency 
(VLF) powers consistently decrease with age. The LF/HF ratio does not 
present this age decline effect, however. Some studies have demonstrated 
age-related and gender-related variability in short-term HRV, both of which 
have significant effects on most linear and non-linear HRV indices (Voss et 
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al. 2015; Voss et al. 2012). For example, research reported significant 
increases in detrended fluctuation analysis (DFA) indices (i.e., α1 and α2) 
across five age groups ranging from 25 – 74 years (10-year intervals). 
Poincare plot analysis indices (SD1 and SD2) presented similar decreases 
across age groups. Significant gender differences were observed in DFA_α1 
results among participants ranging in age from 25 – 64 years. Gender 
differences were not observed with SD1, SD2, or DFA_α2 indices. These 
results have highlighted the degree to which gender and age can affect short-
term HRV indices, and have also underlined the importance of considering 
these factors in any study based on HRV. In this chapter, we focus on young 
adults (19-39 years), due to the fact that this age group presents the highest 
HRV on all of the time-domain, frequency-domain, and non-linear indices 
(Voss et al. 2012; Voss et al. 2015).  

Self-referential processes are those associated with stimuli that are 
experienced as strongly as that of real-life experiences. For example, the way 
we perceive pictures of ourselves with close friends versus pictures of a 
random people on the street, or pictures of a home where we spent most of 
our childhood versus random houses on the street. Meta-analysis of fMRI 
studies has revealed considerable overlap between the neural correlates of 
self-referential processing and those associated with the default mode 
network (Gusnard and Raichle 2001; Raichle et al. 2001), including brain 
regions that are functionally active even under the resting-state conditions. 
There is also considerable overlap between the EEG correlates of self-
referential processing and the anterior hub of the default-mode network, 
particularly in the medial prefrontal cortex (Knyazev 2013; Knyazev et al. 
2012). In the time-domain, distinguishing between self- and others-related 
information is associated primarily with the P300 ERP component. In the 
frequency-domain, spontaneous self-referential processing is associated 
primarily with lower spectral powers in the theta and alpha frequency bands 
(Bocharov et al. 2019; Knyazev et al. 2012). Previous research reported 
minor differences in brain regions in the default mode network (Bluhm et al. 
2008) across ages and genders. It is important to examine the role of self-
referential processing in HRV dimensions.  
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Anxiety is a feeling of apprehensive uneasiness triggered by stressful 
events or anticipated failures. State-anxiety is defined as a transitory 
emotional state arising from threatening or dangerous situations marked by 
increases in the HR and/or respiration. One study on recognizing emotions 
in faces reported that participants experiencing state-anxiety (i.e., with 
elevated amygdala responses) were more likely to categorize faces as fearful 
(vs. neutral), regardless of attentional focus (Bishop, Duncan, and Lawrence 
2004). Trait-anxiety refers to a stable tendency to recognize and report on 
negative emotions that are largely independent of specific situations. Trait-
anxiety is related to increased arousal levels in the behavioral inhibition 
system (BIS), which is particularly pronounced in cases of decision-making 
under uncertainty. Trait-anxiety can affect cognitive outcomes by 
overestimating negative effects in ambiguous situations (Gray 1982). 
Previous research based on the reinforcement sensitivity theory has 
addressed the well-defined role of the BIS; however, the behavioral 
activation system (BAS) is less well-defined, particularly in terms of reward 
versus impulsivity (Taubitz, Pedersen, and Larson 2015). In one study on 
the neural correlates of BIS and BAS, it was reported that BIS was uniquely 
related to the N2 ERP component on NoGo trials of a Go/NoGo task, linking 
BIS to conflict monitoring as well as sensitivity to NoGo cues (Amodio et 
al. 2008). In that study, it was reported that higher BAS scores were uniquely 
associated with pronounced left-sided baseline frontal cortical asymmetry 
associated with approach orientation. However, it remains unclear how 
BIS/BAS is related to resting-state HRV. Several HRV indices have 
consistently indicated reduced vagal activity and elevated sympathetic 
activity under anxiety-provoking situations, suggesting that there is a 
negative relationship between cardiac vagal control and trait-anxiety 
(Friedman 2007). Anxiety disorders are generally associated with a decrease 
in HRV (Chalmers et al. 2014) by showing a shift from autonomic balance 
toward increased sympathetic activity, as characterized by the high LF 
power. It is important to investigate in young adults the link between resting-
state HRV and their anxiety as well as BIS/BAS traits. 

Short-term HRV can be analyzed in the time-domain and frequency-
domain using linear or non-linear indices. As mentioned, resting states have 
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been operationally defined as relaxing quietly under eyes-closed or eyes-
open conditions. Variations in HRV indices and the definitions of resting-
state conditions have led to an inconsistency among studies linking resting-
state HRV to cognitive control. This study was intended to assess the latent 
structures underlying short-term HRV indices under either eyes-closed or 
eyes-open conditions. We analyzed ECGs from 96 young adults (43 women; 
average age 25.69 ± 4.32) whose data were recorded previously in two 
separate experimental studies. One study involved tasks on ambiguous 
sentence detection while the other investigated emotional inhibition. In both 
studies ECG recordings were obtained while the participants were resting 
quietly under 4-min eyes-closed followed by 4-min eyes-open conditions. 
The State-Trait Anxiety Inventory (STAI) (Spielberger and Gorsuch 1983) 
was administered prior to the ECG recording. After the ECG recording, 57 
participants from the first study were assessed using the Self-Referential 
Thought Questionnaire (STQ), whereas 39 participants from the second 
study were assessed using the BIS/BAS scale. As in previous reports (Young 
and Benton 2015), we expected that adding non-linear indices to linear HRV 
indices would aid in predicting behavior responses on these psychological 
scales. We also examined the effects of gender, age, and resting-state 
condition on HRV indices. Finally, we sought to determine the appropriate 
use of HRV latent dimensions under eyes-closed and eyes-open conditions 
for scientific or clinical inquiry. 

 
 

METHODS 
 

Participants 
 
A total of 96 right-handed, neurologically normal adults were recruited 

in the EEG experiment as a part of two separate cohorts. The first cohort was 
formed of a sample of 57 participants in a language study while the second 
one was formed of a sample of 39 participants in an emotional inhibition 
study. All participants were undergraduate or postgraduate students without 
a history of psychiatric and neurological disorders. Specifically, the sample 
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included 43 women aged 19–35 (average age 24.07 ± 3.863) and 53 men 
aged 20–39 (average age 27 ± 4.256). All participants provided informed 
written consent before enrollment in the study. The experiment was 
approved by the Human Subject Research Ethics Committee/Institutional 
Review Board at Academia Sinica, Taiwan, in accordance with the 
Declaration of Helsinki.  

 
 

State-Trait Anxiety Inventory 
 
The Chinese version of the State-Trait Anxiety Inventory (cSTAI) was 

used to assess the explicit anxiety levels of participants (Spielberger and 
Gorsuch 1983; Shek 1993). In the inventory, the 20-item STAI-Trait scale 
targets how participants generally feel, whereas the 20-item STAI-State 
scale assesses how participants feel at the time they took the inventory. State 
and trait anxiety scores were both considered in regression analysis, and a 
larger score indicated a higher anxiety level. On the cSTAI, participants 
were asked to rate themselves on each item based on a 4-point Likert scale, 
ranging from rarely to almost always. The STAI has been clinically 
validated in several studies (Grös et al. 2007; Kvaal et al. 2005). The STAI 
is socially and culturally dependent, that is, different ethnic groups present 
different norms. The 96 participants in this study were from the same 
cultural group; therefore, we used the cSTAI to evaluate relative differences 
among participants in terms of anxiety levels. 

 
 

Self-Referential Thought Questionnaire 
 
The Self-Referential Thought Questionnaire (STQ) was designed to 

measure various aspects pertaining to one’s thoughts and feelings while 
undergoing spontaneous EEG/ECG registration under resting-state 
conditions (Knyazev 2013; Knyazev et al. 2012). All items were measured 
using a five-point Likert scale. The results of factor analysis of all 
questionnaire items (principal factor analysis with varimax rotation) 
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conducted in a large sample (N = 160) revealed that a four-factor solution 
best fitted the data (Knyazev and Slobodskaya 2003). From the original 37 
items in the questionnaire, we selected 29 items that had high loadings on a 
single factor. The subscale “emotions” includes 10 items used to measure 
the emotional response of participants during the ECG recording. Examples 
of typical responses are “I experienced negative emotions during the 
recording” and “I was calm and relaxed during the recording.” A higher 
score indicates that the emotion(s) experienced by the participant tended to 
be positive. The subscale “self-referential thought (SRT)” includes 8 items 
used to measure intrinsic processes. Examples of typical responses are “I 
occasionally tried to recall things in front of me during the recording” and 
“I thought about employment or university problems during the recording.” 
A higher score indicates that the participant was less able to recall events or 
things encountered in his/her daily life. The subscale “attention (ATT)” 
contains 6 items used to measure attentiveness to the recording procedure. 
Examples of typical responses are “During the recording, I paid attention to 
external odors most of the time” and “I felt hot during most of the recording.” 
A higher score indicates that the participant paid less attention to the 
recording procedure. The subscale “drowsiness” contains 5 items used to 
reveal the physiological state of the participants. Examples of typical 
responses are “During the recording, I was very aroused” and “I was dozy 
during most of the recording.” A higher score indicates that the participant 
was more aroused. 

 
 

Behavioral Inhibition System and Behavioral Activation System 
(BIS/BAS) Scale 

 
The behavioral activation system is believed to regulate appetitive 

motives, wherein the goal is to move toward something desired. The 
behavioral inhibition system (or avoidance) is said to regulate aversive 
motives, wherein the goal is to move away from something unpleasant. We 
used the 24-item BIS/BAS scale (Carver and White 1994) to assess 
individual differences in the sensitivity of these systems with respect to 



Short-Term Resting-State Heart Rate Variability 11 

resting-state HRV under eyes-closed or eyes-open conditions. Factor 
analysis conducted on a large number of college students (N = 732) yielded 
four factors (Carver and White 1994). The BIS subscale contains 7 items 
used to measure the degree of social withdrawal. Examples of typical 
responses are “I have fewer fears than do my friends” and “I worry about 
making mistakes.” A higher score indicates that the participant would be 
more likely to inhibit movement toward a goal. The BAS subscale (Reward 
Responsiveness) contains 5 items used to measure positive responses to a 
reward. Two typical responses are “It would excite me to win a contest” and 
“When I see an opportunity to get something I want, I become excited right 
away.” A higher score indicates that the participant was prone to adaptive 
impulsivity. The subscale BAS_drive contains 4 items used to measure 
strong pursuit of appetitive goals. Examples of typical responses are “I go 
out of my way to get things I want” and “If I see a chance to get something 
I move toward getting it right away.” A higher score indicates that the 
participant was prone to dysfunctional impulsivity. The subscale 
BAS_fun_seeking contains 4 items used to measure one’s ability to seek out 
potentially rewarding situations and act without advance preparation or 
deliberation. Examples of typical responses are “I often act on the spur of 
the moment” and “I crave excitement and new sensations.” A higher score 
indicates that the participant was prone to functional impulsivity.  

 
 

EEG/ECG Recording 
 
Following completion of the cSTAI, participants sat comfortably with 

eyes open in a chair positioned 60 cm in front of a computer screen in a 
sound-insulated chamber. Electroencephalograms (EEGs) and 
electrocardiograms (ECGs) were recorded using an EEG cap with 132 
Ag/AgCl electrodes (including 122 10–10 system EEG, the bipolar VEOG, 
HEOG, ECG, EMG, and six facial-muscle electrodes). The EEG electrodes 
were placed in 122 sites according to the extended international 10–10 
system and were referred to as Cz with ground at FzA. Bipolar ECG 
electrodes were placed on the back of both the left and right hands of 
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participants. Electrode resistance was maintained below 5 kW. Signals were 
amplified using Neuroscan amplifiers, with 0.1–100 Hz analog bandpass 
filtering and then digitized at 1000 Hz. Before performing experimental 
tasks, the resting-state EEGs and ECGs were recorded for 4-min under the 
eyes-closed condition followed by 4-min under the eyes-open condition. For 
these conditions, participants were told to relax in a chair and they were 
instructed to fixate their gaze on a central cross on a 24.4 x 18.3 cm screen 
located in front of them under the eyes-open condition (Gusnard and Raichle 
2001). After resting-state EEG/ECG registration, each participant from the 
first cohort self-reported her/his condition during the resting-state recording 
using the Chinese version 37-item STQ (Knyazev and Slobodskaya 2003) 
while each participant from the second cohort filled out the 24 item 
BIS/BAS scale (Carver and White 1994). 

 
 

HRV Analysis 
 
Resting-state ECGs were processed separately for eyes-closed and eyes-

open conditions using Kubios HRV-2.2 software (Tarvainen et al. 2014) for 
HRV indices in the time- and frequency-domains as well as non-linear 
analysis. The non-linear analysis provides measures of irregularity or 
complexity in an ECG time series and so are named as “non-linear” while 
time- and frequency-domain indices provide linear measures of HRV indices. 
Table 1 provides an overview of the 21 HRV indices employed in this study. 
Artifacts and linear trends were removed using built-in filtering and 
detrending functions. The signals were then examined manually for quality 
assurance purposes. Default HRV analysis was conducted using Welch’s 
periodogram method based on the Fast Fourier transform with a 60-sec 
window and 50% overlap, at a sampling rate of 1000 Hz and a smoothing 
parameter of 500 for smoothing priors in the detrending function. 

The RR interval is defined as the interval from the peak of one QRS 
complex to the peak of the next QRS complex in an ECG time series. The 
time-domain indices included the SDNN, RMSSD, and pNN50 which were 
calculated on the basis of RR intervals. Two indices computed from the RR 
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interval histogram were also considered. The HRV triangular index 
(tri_index) is the integral of the RR interval histogram (the number of RR 
intervals within a time series) divided by the height of the histogram 
(number of RR intervals in the modal bin). The triangular interpolation of 
RR interval histogram (TINN) is the baseline width of a triangle fitted to the 
histogram. All of the above time-domain indices were computed separately 
under eyes-closed and -open conditions (Chang et al. 2013).  

Frequency domain HRV indices were computed using power spectral 
analysis in which the time series was transformed into the frequency domain. 
The RR interval time series was converted to equidistantly-sampled series 
via cubic spline interpolation. The HRV spectrum was calculated using the 
FFT-based Welch periodogram method, which involved dividing the RR 
time series into 60-sec time windows with 50% overlap. Spectrum estimates 
were obtained by averaging the FFT spectra of the windowed segments. The 
average spectral power was estimated within the VLF (0–0.04 Hz), LF 
(0.04–0.15 Hz), and HF (0.15–0.4) bands. These indices were extracted from 
power spectral density estimates of the RR interval time series in absolute 
units (ms2). Relative power was computed by dividing the absolute power 
by the total spectral power. For each participant, the LF/HF ratio was 
computed separately under eyes-closed and eyes-open conditions by 
dividing the absolute power in HF and LF bands. 

Several non-linear methods were also used to assess the RR time series 
data.  

 
Poincaré Plots 

The Poincaré plot is a simple scatter plot, which provides indices for 
short-term variability (SD1) and long-term variability (SD2), both of which 
are non-linearly connected to time-domain indices (Brennan, Palaniswami, 
and Kamen 2001). It is a graphical representation of the correlation between 
successive RR intervals; that is, RRj+1 is expressed as a function of RRj, 
where RRj denotes the R-peak at the jth QRS complex. The interpretation of 
the plot is done by parameterizing the shape so as to fit an ellipse oriented 
to the line of identity where RRj+1 = RRj. The standard deviation of points 
perpendicular to the line of identity is denoted as SD1. Note that this is 
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caused primarily by respiratory sinus arrhythmia. The standard deviation of 
the points along the line of identity is denoted as SD2. 

 
Entropy 

Sample entropy (SampEn) and approximate entropy (ApEn) (Richman 
and Moorman 2000) have been used to measure the degree of irregularity or 
complexity of a time series. ApEn is commonly used to quantify the entropy 
of a system. The derivation of ApEn involves examining a time series for 
similar segments and measuring the likelihood that close patterns remain 
close in subsequent incremental comparisons. The close patterns are defined 
by dividing the RR time series into a set of length m vectors. Here, m was 
set to a default value at 2. Note that ApEn is sensitive to the data length, 
which means that ApEn estimates for short time series tend to be low. 
SampEn is similar to ApEn; however, it does not count self-matches and is 
less sensitive to the data length. SampEn has been defined as the negative 
natural logarithm of the conditional probability that data of length N, having 
repeated itself within tolerance r for m points, will repeat itself for m+1 
points. Here, m was set at 2 and r was set at 0.2×SDNN by default. 

 
Detrended Fluctuation Analysis 

DFA measures correlations between short-term and long-term 
fluctuations in an RR time series (Peng et al. 1995). The DFA algorithm 
proceeds through four steps: (i) removing the global mean and integrating 
the time series of a signal; (ii) dividing the integrated signal into non-
overlapping windows of equal length n; (iii) performing least squares line 
fitting on each data window to obtain residuals; and (iv) detrending the 
integrated signal by subtracting the local trend within each segment and 
calculating the root-mean-square fluctuations of the integrated signal as 
fluctuation amplitude F(n). The same four steps are repeated for the various 
time scales n and plotted against window size on a log-log scale. The scaling 
exponent DFA α indicates the slope of the line, which relates the log of 
fluctuation amplitudes to the log of window sizes. Short-term fluctuations 
are characterized by the slope 𝛼! obtained from the (log (n), log F (n)) graph 
within the range of 4 - 12 beats, whereas long-term fluctuations are 
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characterized by the slope 𝛼" obtained from the (log (n), log F (n)) graph 
within the range of 13 - 64 beats. 

 
Recurrence Plot Analysis 

Recurrence plot analysis (RPA) is used to visualize the recurrence 
behavior of a phase space trajectory in dynamic systems (Marwan et al. 
2007). A phase space trajectory is first reconstructed from a time series using 
time delay embedding m. Close states in the phase space can then be plotted 
as a recurrence plot in accordance with threshold r. A recurrence plot is a 
symmetrical matrix of zeros and ones with order [N − (m − 1) τ] by [N − (m 
− 1) τ], where m is the embedding dimension and τ is the embedding lag. In 
the current study, we used the following settings: m = 10, τ = 1, and r = √𝑚 
× SDNN. Recurrence quantification analysis was used to define measures 
for diagonal segments in a recurrence plot, which includes the following: (i) 
the recurrence rate (RPA_REC) indicating the recurrence probability 
measured as the percent of the plot filled with recurrent points, (ii) 
determinism (RPA_DET) indicating the degree of predictability measured 
by the percent of recurrent points forming diagonal lines with a minimum of 
two adjacent points, (iii) the Shannon entropy of line length distribution 
(RPA_ShanEn), and (iv) the maximum line length (lmax) which is inversely 
related to the largest positive Lyapunov exponent as a measure of system 
divergence (RPA_DIV). 

 
Other Information Measures 

The correlation dimension (CorDim) index (Grassberger and Procaccia 
1983) is another measure of signal complexity, which provides information 
pertaining to the minimum number of dynamic variables required to model 
the underlying system. 
 

Table 1. Overview of the HRV indices considered in this study 
 

Indices Units Definitions 
SDNN [sec] The standard deviation of RR intervals. 
RMSSD [sec] The square root of the mean squared differences between successive 

RR intervals. 
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pNN50 [%] The number of successive RR interval pairs that differ more than 50 
ms divided by the total number of RR intervals. 

HRV_tri_index  The integral of the RR interval histogram divided by the height of 
the histogram. 

TINN  Baseline width of the RR interval histogram.  
HF_power_prc [%] HF[%] = HF[ms2] / total power[ms2] × 100%  
LF_power_prc [%] LF[%] = LF[ms2] / total power[ms2] × 100% 
VLF_power_prc [%] VLF[%] = VLF[ms2] / total power[ms2] × 100% 
LF/HF   The ratio between LF and HF powers. 
Poincare_SD1 [ms] Poincare plot for short term variability. 
Poincare_SD2 [ms] Poincare plot for long term variability. 
ApEn  Approximate entropy. 
SampEn  Sample entropy. 
CorDim  Correlation dimension. 
DFA_𝛼!  Detrended fluctuation analysis: Short term fluctuation slope. 
DFA_𝛼"  Detrended fluctuation analysis: Long term fluctuation slope. 
RPA_Lmean [beats] Recurrence plot analysis: Mean line length. 
RPA_DIV  Recurrence plot analysis: Divergence. 
RPA_REC [%] Recurrence plot analysis: Recurrence rate. 
RPA_DET [%] Recurrence plot analysis: Determinism. 
RPA_ShanEn  Recurrence plot analysis: Shannon entropy. 

 
 

Principal Component Analysis 
 
Principal component analysis (PCA) is a multivariate statistical 

procedure with which random observations are transformed into a smaller 
set of uncorrelated variables referred to as principal components (PCs) 
(Jolliffe 2014). In other words, the original variables are presented as a 
weighted sum of orthogonal basis vectors, where the basis vectors are the 
eigenvectors of the data correlation (or covariance) matrix and the weights 
are the PCs. Typical applications of PCA include dimension reduction, 
feature extraction, and visualization of multidimensional data. In this chapter, 
PCA was used to analyze the correlation matrix among HRV indices in order 
to interpret multidimensional HRV data in reduced dimensions. The PCA 
results for 42 HRV indices (under eyes-closed and eyes-open conditions 
with 21 indices each) generated 9 components following PCA feature 
extraction (Tabachnick, Fidell, and Ullman 2019). After orthogonal varimax 
rotation of the 9 PCs, the time-domain HRV indices and Poincare plot 
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analysis indices were neatly loaded on the same dimension, whereas the 
frequency-domain, non-linear, and VLF indices were loaded on separate 
dimensions depending on the resting-state conditions, that is, eyes-closed 
(EC) or eyes-open (EO) conditions. The 9 factors explained 87% of the 
overall data variance. The ApEnEO and RPA_LmeanEC indices in Table 1 
measured two PCs, which were uncorrelated with other HRV indices. 
ApEnEC had a higher loading on the dimension represented by the VLF 
power and DFA_α2 while RPA_LmeanEO

 had higher loading on the non-
linear HRV dimension under the eyes-open condition. For ease of 
interpretation, we eliminated those 4 indices (i.e., ApEnEC, ApEnEO, 
RPA_LmeanEC, and RPA_LmeanEO), and re-conducted PCA on the 
remaining indices. The time-domain indices were robust to eyes-closed and 
eyes-open conditions; therefore, the 8-min time-domain HRV indices were 
estimated again by combining the ECGs obtained under the two resting-state 
conditions. The resulting PCA suggested 7 components, which accounted 
for 85.34% of the variation among the 31 indices. The component scores 
were estimated for individual participants using the regression method 
(Tabachnick, Fidell, and Ullman 2019). PCA, varimax rotation, and 
estimation of component scores were conducted using IBM SPSS Statistics 
20. 

 
       
Statistical Analysis 

 
To establish a link between latent HRV dimensions and STQ, cSTAI, 

and BIS/BAS behavioral scores, we ran a series of stepwise regressions to 
facilitate the selection of variables using the SPSS package.  

 
 

RESULTS 
 
Among the 31 selected HRV indices as listed in Table 2, those in the 

frequency-domain differed significantly in terms of gender, wherein the 
average HF index of women was higher than that of men (p < .001 under 
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both resting-state conditions), and women had the lower average LF index 
(p < .001 under both resting-state conditions) and lower average LF/HF ratio 
(p < .001 under the eyes-closed condition and p = .003 under the eyes-open 
condition) (Koenig and Thayer 2016). It is widely known that DFA_𝛼! can 
be estimated by LF/(LF+HF) (Francis et al. 2002); therefore, it is not 
surprising that this HRV index also revealed significant gender differences, 
wherein the 𝛼! values of men were higher than those of women under both 
resting-state conditions (Voss et al. 2015). The pNN50 index was the only 
time-domain index that presented significant differences between genders 
(Voss et al. 2015). Generally, the time-domain HRV indices were higher in 
women than in men. Men and women presented comparable mean values on 
non-linear indices under eyes-closed as well as eyes-open conditions, a case 
which indicates that non-linear HRV indices may be insensitive to gender 
differences. Under the eyes-open condition, the VLF and DFA_𝛼" indices 
of men and women were comparable. However, the VLF and DFA_𝛼" 
indices of men tended to be higher under the eyes-closed condition. Also, 
the CorDim indices of women were slightly higher than those of men under 
both resting-state conditions. After controlling for gender differences, all 
time-domain indices were significantly correlated with ages, wherein the 
time-domain indices of older participants tended to be lower (e.g., 
Poincare_SD1 and Poincare_SD2). After controlling for the gender 
differences, the other HRV indices appeared to be uncorrelated with ages. 
In summary, the HRV levels of women tended to be higher than those of 
men (particularly under the resting-state eyes-closed condition), and time-
domain indices were sensitive to age differences. Non-linear HRV indices 
were relatively unaffected by age and gender differences; therefore, we 
explored their use as covariates in predicting cognitive outcomes.  

 
Table 2. Statistical t-test for gender and age effects 

 
PCs HRV indices Men Women Agea 
Time SDNN [8-min] .058 

(.023)b 
.060 

(.026) 
-.292** 

pNN50 [8-min] 25.559 
(17.747) 

33.419* 
(17.624) 

-.252* 
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TINN [8-min] .394 
(.165) 

.450 
(.251) 

-.311** 

RMSSD [8-min] .059 
(.030) 

.070 
(.038) 

-.328** 

HRV_tri_index [8-min] 12.703 
(4.184) 

13.143 
(4.197) 

-.308** 

Poincare_SD1 [8-min] .042 
(.021) 

.050 
(.027) 

-.328** 

Poincare_SD2 [8-min] .070 
(.026) 

.067 
(.027) 

-.255* 

FreqEC HF_power_prcEC 42.501 
(19.160) 

62.403** 
(15.719) 

-.071 

LF_power_prcEC 51.112 
(17.754) 

33.355** 
(14.462) 

.070 

LF/HF_powerEC 1.747 
(1.406) 

.629** 
(.401) 

.055 

DFA_𝛼!EC 1.020 
(.282) 

.773** 
(.229) 

.089 

FreqEO HF_power_prcEO 40.087 
(17.351) 

54.237** 
(17.559) 

-.106 

LF_power_prcEO 53.134 
(15.804) 

39.905** 
(16.123) 

.122 

LF/HF_powerEO 1.932 
(1.857) 

.992** 
(.888) 

.169 

DFA_𝛼!EO 1.065 
(.275) 

.874** 
(.244) 

.209 

NonlinEC SampEnEC 1.592 
(.324) 

1.550 
(.302) 

.038 

 
Table 2. (Continued) 

 
PCs HRV indices Men Women Agea 

 RPA_DETEC .972 
(.016) 

.969 
(.016) 

-.097 

RPA_DIVEC .014 
(.007) 

.015 
(.007) 

.027 

RPA_RECEC .297 
(.136) 

.294 
(.155) 

-.078 

RPA_ShanEnEC 3.014 
(.431) 

3.033 
(.358) 

-.081 

NonlinEO SampEnEO 1.526 
(.340) 

1.551 
(.269) 

-.043 

RPA_DETEO .974 
(.017) 

.976 
(.014) 

-.034 

RPA_DIVEO .012 .013 -.091 
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(.007) (.006) 
RPA_RECEO .331 

(.171) 
.342 

(.159) 
.005 

RPA_ShanEnEO 3.048 
(.401) 

3.111 
(.343) 

-.008 

VLF VLF_power_prcEC 6.290 
(5.088) 

4.140* 
(3.017) 

.027 

VLF_power_prcEO 6.677 
(4.253) 

5.753 
(3.494) 

-.020 

DFA_𝛼"EC .305 
(.135) 

.291 
(.121) 

.024 

DFA_𝛼"EO .347 
(.142) 

.351 
(.108) 

-.178 

CorDim CorDimEC 2.893 
(1.208) 

3.087 
(1.101) 

-.124 

CorDimEO 2.916 
(1.155) 

3.144 
(.940) 

-.090 

a The partial correlations between age and HRV indices conditional on the gender effect. b The standard 
deviation of each HRV index listed in parentheses. The symbol “*” indicates that the two-sample 
t-test or partial correlation is significant at p < .05, and the symbol “**” indicates that the test is 
significant at p < .01.  

 
As shown in Table 3, the latent dimension referred to as Time had 

positive loadings on all 8-min time-domain indices. The two latent 
dimensions, so-called FreqEC and FreqEO respectively, had high loadings on 
indices in the frequency-domain; however, HF indices had negative loadings 
on these dimensions and the other indices had positive loadings. As 
mentioned, DFA_𝛼! can be approximated by LF/(LF+HF) (Francis et al. 
2002). Thus, the only difference between LF/HF and LF/(LF+HF) is the 
denominator. We may interpret FreqEC and FreqEO as HRV dimensions 
reflecting a balance between sympathetic and parasympathetic activity. The 
two non-linear dimensions referred to as NonlinEC and NonlinEO respectively 
had high loadings on non-linear indices; however, SampEn and RPA_DET 
had negative loadings and the other indices had positive loadings on these 
dimensions. One study reported that the SampEn index had a negative 
loading on the non-linear HRV dimension (Young and Benton 2015), 
whereas the RPA_DET index had a positive loading on the non-linear HRV 
dimension. The ECG recordings in Young and Benton’s study were obtained 
while the participants were relaxing and listening to calming music for 5-
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min. In the current study, ECG recordings were obtained with the 
participants in a resting state under eyes-closed or eyes-open conditions. It 
is possible that the difference between the findings in the two studies can be 
attributed to the presence/absence of calming music (Young and Benton 
2015). It has previously been demonstrated that DFA_α2 is mathematically 
associated with the VLF index, which means that it can be approximated by 
VLF/(VLF+LF) (Francis et al. 2002). The so-called VLF dimension is 
primarily a reflection of the long-memory component in DFA. The two 
correlation dimension indices measured a single dimension, CorDim. We 
did not combine the two indices into a single 8-min CorDim index because 
the correlation between the two indices was deemed insufficient (despite 
reaching statistical significance) (r = 0.68; p < .001). 

Among the 7 HRV dimensions listed in Table 4, FreqEC and FreqEO 
showed significant gender-related differences; that is, the component scores 
of women on these dimensions were significantly lower than those of men. 
There were insignificant correlations between age and all component scores 
except for Time, a case which suggested that the component scores gained 
by younger participants during the ECG recording were higher than those of 
their older counterparts. The statistical test results pertaining to component 
scores were consistent with the indices in Table 2. In other words, the 7 
latent dimensions preserved the important gender-related and age-related 
information in the original raw indices. In summary, the two latent 
dimensions related to HRV indices in the frequency-domain were sensitive 
to gender differences, whereas the dimension related to the time-domain 
indices was sensitive to age differences. Other latent dimensions were 
relatively independent of gender and age effects. Nonetheless, none of the 
subscale scores on the STQ (drowsiness, emotion, ATT, or SRT) presented 
significant differences between genders, and when the gender effect was 
eliminated, none of the correlations between ages and subscale scores 
reached the level of significance. Furthermore, none of the BIS scores or 
subscale scores on the BAS scale (drive, fun-seeking, or reward 
responsiveness) presented significant gender differences, and none of the 
partial correlations between ages and those BIS/BAS scores reached the 
level of significance. The state- and trait-anxiety scores of women were 
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slightly higher than those of men, but none of those differences reached the 
level of statistical significance.  

 
Table 3. Latent dimensions of 31 HRV indices after the  

varimax rotation 
 

HRV Time FreqEO NonlinEC NonlinEO FreqEC VLF CorDim 

SDNN (8-min) .970 -.007 .112 .140 -.006 -.019 .088 
HRV_tri_index (8-min) .681 -.257 -.226 -.308 -.287 -.169 .190 
pNN50 (8-min) .758 -.149 .146 .482 .058 .055 .021 
TINN (8-min) .914 -.269 .076 .093 -.128 -.064 -.007 
RMSSD (8-min) .858 .071 -.044 -.230 -.078 -.160 .163 
Poincare_SD1 (8-min) .914 -.269 .076 .093 -.128 -.064 -.007 
Poincare_SD2 (8-min) .928 .148 .119 .160 .064 .015 .146 
HF_powerEC

 (4-min) .078 -.330 -.119 -.161 -.885 -.178 .010 
LF_powerEC

 (4-min) -.063 .362 .130 .177 .870 .001 -.032 
LF/HF_ratioEC

 (4-min) -.032 .385 .197 .053 .798 .030 -.045 
DFA_𝛼!EC (4-min) -.190 .463 .116 .212 .703 .174 -.090 
HF_powerEO

 (4-min) .050 -.877 .102 -.081 -.290 -.205 .060 
LF_powerEO

 (4-min) -.057 .861 -.114 .079 .328 .055 -.024 
LF/HF_ratioEO

 (4-min) -.079 .837 .081 .041 .253 -.078 -.021 
DFA_𝛼!EO (4-min) -.238 .853 .015 .132 .291 .114 -.011 

 
 

Table 3. (Continued) 
 

HRV Time FreqEO NonlinEC NonlinEO FreqEC VLF CorDim 
SampEnEC

 (4-min) -.077 -.008 -.858 -.228 .049 .215 .015 
RPA_DIVEC

 (4-min) .115 .042 .895 .242 .154 .096 -.031 
RPA_DETEC

 (4-min) .161 -.070 -.816 -.045 -.185 -.089 .240 
RPA_ShanEnEC

 (4-min) .190 -.114 .731 .392 .155 .222 .045 
RPA_RECEC

 (4-min) .080 -.134 .817 .295 .066 .150 -.037 
SampEnEO

 (4-min) -.245 -.236 -.511 -.638 -.125 -.001 .132 
RPA_DIVEO

 (4-min) .123 .217 .322 .827 .128 .050 -.089 
RPA_DETEO

 (4-min) .178 -.393 -.134 -.664 -.153 -.030 .062 
RPA_ShanEnEO

 (4-min) .169 -.039 .205 .889 .115 .161 -.104 
RPA_RECEO

 (4-min) .038 -.038 .327 .855 .086 .086 -.071 
VLF_powerEC

 (4-min) -.099 -.004 -.010 -.007 .403 .810 .087 
VLF_powerEO

 (4-min) .006 .424 .013 .035 -.056 .730 -.182 
DFA_𝛼"EC (4-min) -.248 -.143 .126 .108 .192 .736 .044 
DFA_𝛼"EO (4-min) .045 .204 .125 .224 -.197 .741 -.283 
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CorDimEC
 (4-min) .355 -.083 -.165 -.142 .011 -.184 .772 

CorDimEO
 (4-min) .096 -.024 -.076 -.124 -.099 -.027 .916 

 
Table 4. Statistical t-test for gender and age effects on the  

the 7 HRV component scores 
 

PCs Men Women Agea 
Time -.022 

(.889) 
.027 

(1.132) 
-.328** 

FreqEC .422 
(.947) 

-.520** 
(.807) 

.041 

FreqEO .226 
(1.056) 

-.278** 
(.859) 

.098 

NonlinEC <.001 
(.954) 

< - .001 
(1.065) 

-.059 

NonlinEO -.123 
(1.009) 

.152 
(.980) 

.052 

VLF .048 
(1.154) 

-.059 
(.778) 

-.102 

CorDim -.067 
(1.080) 

.082 
(.897) 

-.016 

a The partial correlations between age and component scores conditional on the gender effect. The symbol 
“*” indicates that the two sample t-test or partial correlation is significant at p < .05, and the symbol 
“**” indicates that the test is significant at p < .01. The means and standard deviations of component 
scores are listed in the table according to genders and HRV dimensions.  

 
Table 5. Stepwise regression analysis on the HRV component scores 

and psychological scale scores 
 

Scale scores Age Gender Time FreqEC FreqEO NonlinEC NonlinEO VLF CorDim 
Self-Referential Thought (N = 57) 

Emotions       t54 =  
-2.498; 
p= .016 

 t54 =  
2.857; 
p= .006 

SRT  t54 =  
2.103; 
p= .040 

 t54 =  
3.316; 
p= .002 

     

ATT      t54 =  
-2.071; 
p= .043 

t54 =  
2.332; 
p= .023 

  

Drowsiness   t53 =  
-3.341; 
p= .002 

 t53 =  
-1.776; 
p= .081 

t53 =  
2.167; 
p= .035 
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BIS/BAS Scales (N = 39) 
BIS  t36 =  

1.777; 
p= .084 

   t36 =  
-3.162; 
p= .003 

   

BAS_Drive          
BAS_FunSeeking          
BAS_reward          

State-Trait Anxiety (N = 96) 
Trait Anxiety      t94 =  

-1.876; 
p= .064 

   

State Anxiety t92 =  
-2.674; 
p= .009 

    t92 =  
-2.356; 
p= .021 

t92 =  
-1.912; 
p= .059 

  

 
Table 5 lists the HRV dimensions that had significant effects in predicting the 

scores on different psychological scales under stepwise regression analysis. To 
compensate for the small sample sizes, we opted for the inclusion of predictors in 
the stepwise procedure using the critical value α	= 0.09 (rather than 0.05). For 
example, NonlinEO and CorDim appeared to have significant effects when used to 
predict emotion scores in the STQ following the inclusion of age, gender, and all 7 
of the HRV dimensions within the regression model. The NonlinEO dimension was 
negatively correlated with pNN50 (r = -.308; p = .002) and HRV_tri_index (r = 
-.230; p = .024); however, it was positively correlated with TINN (r = .482; p < .001) 
and DFA_α1 (r = .212; p = .038). Our regression results suggest that participants 
presenting signs of positive emotions during the ECG recording tended to achieve 
lower NonlinEO scores (r = -.310, p = .019). Nonetheless, emotion scores were 
uncorrelated with NonlinEC scores (r = .002, p = .987). It is interesting to note that 
CorDim was not correlated with any of the HRV indices in the time- or frequency-
domain. Furthermore, participants presenting signs of positive emotions during the 
ECG recording tended to achieve higher CorDim scores (r = .352, p = .007), which 
could conceivably be interpreted as a positive emotion index. The regression results 
also suggest that gender and FreqEC were significant predictors of SRT scores. The 
FreqEC dimension was negatively correlated with pNN50 (r = -.287; p = .005) given 
that this component had a negative correlation with the HF power and a positive 
correlation with the LF power. Thus, FreqEC scores could be considered an indicator 
of sympathetic activity. As mentioned, a lower SRT score is an indication that the 
participant was more able to recall events in his or her daily life. Our regression 
results suggest that men under parasympathetic control would tend to recall daily 
life events during the ECG recording. 
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The NonlinEC dimension was negatively correlated with pNN50 (r = -.226; p 
= .027) and uncorrelated with other indices in the time- and frequency-domains. 
This dimension was strongly associated with the degree of attention paid by 
participants to odors, sounds, and skin sensations during the recordings. Participants 
with lower NonlinEO scores (positive emotions) and higher NonlinEC scores tended 
to pay attention to the recording procedure. It is interesting to note that higher 
NonlinEC scores were also associated with less pronounced social withdrawal on the 
BIS (r = -.465; p = .003). It would be reasonable to hypothesize that the NonlinEC 
dimension could be used as a social withdrawal index, reflecting the degree of 
attention paid to the recording procedure, where a higher NonlinEC score was 
associated with more attention and less pronounced social withdrawal. Drowsiness 
(based on arousal scores) had significantly negative correlations with all indices in 
the time domain. In other words, the level of arousal in participants was proportional 
to the degree to which they were under sympathetic control and the level of attention 
they paid to ECG recording procedures (i.e., odors, sounds, and skin sensations). 
Note that the function of FreqEO scores was similar to that of Time scores. The 
results in Table 5 suggest that the BIS scores were strongly associated with gender 
and NonlinEC. Women had higher BIS scores and paid less attention to ECG 
recording procedures, compared with men. Younger participants also had higher 
state-anxiety scores and appeared to pay more attention to the ECG recording 
procedures. The VLF dimension was not strongly predictive of scale scores in the 
current study; however, it may be a predictor of other behavioral outcomes. 

 
 

DISCUSSION 
 
In this chapter, our analysis revealed an association between various 

psychological scales and the latent structures of short-term HRV indices under two 
resting-state conditions. We also explored the effects of gender, age, and resting-
state condition on these latent structures. Frequency-domain and non-linear HRV 
indices could be used to differentiate eyes-closed and eyes-open conditions, as 
evidenced by our PCA results. Thus, we strongly recommend that indices in the 
time-domain be used to index short-term resting-state ECGs in cases where resting-
state conditions are not an issue of primary concern. The indices in the time- and 
frequency-domains revealed that parasympathetic activity is more pronounced in 
women than in men. The time-domain indices also revealed that older participants 
were more profoundly affected by sympathetic activity than were their younger 
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counterparts. This is the first study to characterize physiological and affective status 
during the resting-state ECG recording based on latent HRV dimensions. Our 
stepwise regression analysis suggested the following: (i) the latent dimension Time 
was a good indicator of drowsiness in participants; (ii) FreqEC was strongly 
associated with SRT scores and a reliable indicator of sympathetic activity; (iii) 
NonlinEC was strongly associated with anxiety and social withdrawal and was a 
reliable predictor of drowsiness and the degree of attention paid to the ECG 
recording procedure; (iv) NonlinEO was strongly associated with the emotional 
experience of participants during the recording process as well as the degree of 
attention to the ECG recording procedure; (v) CorDim was significantly correlated 
with positive emotions during the ECG recording.  

Our analysis results suggested that NonlinEC and NonlinEO were relatively 
robust to gender and age differences in young adults. Previous studies have 
recommended using non-linear HRV indices to predict gender-by-behavior 
interactions in terms of attention, memory, reaction times, emotional responses, and 
cortisol levels (Young and Benton 2015). It was reported that the use of non-linear 
HRV indices could significantly increase the percentage of variation explained in 
regression analysis for the prediction of behavioral outcomes. For example, 
frequency-domain indices alone were unable to predict treatment outcomes in 
patients who were afraid of flying, but the predictive power was increased by 18% 
after adding the SampEn index to the regression model (Bornas et al. 2006). It was 
also reported that non-linear HRV indices were significantly related to ratings of 
depression and salivary cortisol levels, whereas frequency- and time-domain indices 
were associated with perceived stress and anxiety (Young and Benton 2015). Those 
researchers suggested that non-linear HRV indices capture additional information 
on top of those obtained based on traditional HRV indices. They also indicated that 
in some instances, the contribution of non-linear HRV indices was essential to 
predictive performance (e.g., CorDim and NonlinEC). It is interesting to note that 
NonlinEC and NonlinEO predicted ATT scores well as indicated in the results in Table 
5. However, if we considered the 10 raw non-linear indices in the stepwise 
regression, none of these indices would have a significant effect in predicting the 
ATT scores at α = 0.09. This finding has demonstrated that latent dimensions of 
HRV indices are more predictive of psychological traits than are the original non-
linear indices. 

The psychophysiological underpinnings of non-linear HRV have yet to be 
investigated; however, there is rich evidence indicating that these indices could be 
used to quantify heart rate dynamics and have a strong association with the 
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functioning of the central nervous system. Previous studies used pharmacological 
intervention to clarify the contribution of activity in the autonomic nervous system 
(ANS) to measures of complexity in characterizing HRs. For example, one study 
measured linear (SDNN, RMSSD, LF power, and HF power) and non-linear (short-
term DFA_α1 and ApEn) HRV indices for a 5-min period before and after the 
intravenous injection of 0.6 mg of atropine (a parasympathetic antagonist). The 
results in that study revealed a significant increase in DFA_α1 after atropine 
injection (Perkiomaki et al. 2002). In addition, DFA_α1 showed significant negative 
correlations with several linear HRV indices (SDNN, RMSSD, and HF power) and 
a positive correlation with HRs at the baseline level while this effect vanished after 
atropine injection. Interestingly, ApEn failed to show significant correlation with 
any of the linear HRV indices or HR either before or after the atropine treatment. 
This suggests that vagal activity has a significant contribution to the fractal nature 
of HR time series, but it is not a major determinant of ApEn. Our study has partially 
supported this notion. Specifically, PCA revealed that DFA_α1 was loaded heavily 
on the same dimensions as were indices in the frequency domain; however, SampEn 
and the recurrent plot indices co-loaded onto a separate dimension (Young and 
Benton 2015) under the eyes-closed condition or eyes-open condition, respectively. 
We recommend measuring HR entropy and performing RP analyses since they are 
both able to capture information that is not attributable to ANS activity as reflected 
by linear HRV indices in time- and frequency-domains. 

To the best of our knowledge, this is the first study to use resting-state HRV 
indices for the prediction of STQ scores. Previous research linked the DFA_α1 index 
with anxiety scores and affective problems (Fiskum et al. 2018). By contrast, our 
findings indicated that SRT scores could be predicted based on FreqEC (including 
DFA_α1). Drowsiness has traditionally been associated with the parasympathetic 
nervous system. Research showed that the HR decreased with sleepiness in drivers, 
leading to increases in HRV based on the SDNN, TINN, and Poincare SD1, SD2 
indices (Buendia et al. 2019). By contrast, we found that Time was a significant 
predictor of “drowsiness.” One previous study reported that non-linear HRV indices 
could increase the predictive power of a regression model used to account for 
reaction times obtained from focused attention tasks (Young and Benton 2015). This 
suggests that NonlinEO may play a general role in attention status. In line with this 
finding, we demonstrated that NonlinEO was positively predictive of ATT scores and 
negatively predictive of emotion scores.  

In the current study, BIS scores were negatively correlated with NonlinEC 
component scores (r = -.465, p = .003) and positively correlated with trait-anxiety 
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scores (r = .781, p < .001). These findings are consistent with recent reports 
characterizing the relationship between anxiety and non-linear HRV. The BIS is a 
complex system involving the inhibition of ongoing behaviors, increasing vigilance, 
and promoting arousal in reaction to stimuli associated with pain, punishment, 
failure, loss of reward, novelty, or uncertainty (Gray 1982). Trait-anxiety is closely 
related to sensitivity toward BIS activation (Corr and Cooper 2016). Thus, 
individuals with high trait-anxiety tend to receive higher scores on the BIS scale. It 
was previously demonstrated that BIS scores were associated with alpha power 
under resting-state conditions (Knyazev, Savostyanov, and Levin 2004; Knyazev 
and Slobodskaya 2003), and that the BIS and anxiety scores of women were higher 
than those of men. One recent study reported a significant correlation between state 
anxiety and SampEn (Dimitriev, Saperova, and Dimitriev 2016) during rest and 
exam sessions as well as a significant correlation between state anxiety and DFA_α2 
during exam sessions. Another study using RMSSD as an indicator of 
parasympathetic control found no correlation between HRV and BIS scores 
(Scholten et al. 2006). Despite a small sample size, our study showed that BIS could 
be predicted by NonlinEC , suggesting that non-linear HRV indices revealed 
information beyond the ANS. Previous study showed strong correlations between 
BIS scores and scores on negative affectivity scales and neuroticism (Jorm et al. 
1998). In contrast, weak correlations were reported between BIS scores and 
symptoms of anxiety and depression. This can be explained by the fact that BIS 
scores have been designed to measure one’s predisposition to anxiety rather than the 
experience of anxiety. The fact that gender (t36 = 2.286; p = .028) and trait-anxiety 
scores (t36 = 4.882; p < .001) were strongly predictive of BIS scores (Table 5) means 
that trait-anxiety remains the best predictor of BIS, which is also strongly associated 
with NonlinEC. 

Broadly speaking, our results are indicative of two separate dimensions within 
the sympathetic domain. Specifically, HRV indices classified to FreqEC, FreqEO, 
NonlinEC, and NonlinEC were negatively correlated with HF, RMSSD, SDNN and 
pNN50. We could argue that Time was a measure of parasympathetic activity owing 
to positive loadings of RMSSD, SDNN and pNN50 on this dimension. Since FreqEC, 
FreqEO, NonlinEC, and NonlinEC were negatively correlated with the above 
mentioned indices measuring parasympathetic activity, we could further argue that 
they might be measuring activity in the sympathetic domain. This distinction is most 
notable in NonlinEC, and NonlinEO, wherein eyes-closed and eyes-open conditions 
differed (positive and negative t values in Table 5) in their predictions of “attention 
to the ECG recording procedure.” Note that state-anxiety scores were negatively 
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predicted by both NonlinEC and NonlinEO; that is, lower state anxiety scores were 
associated with higher NonlinEC and NonlinEO component scores. This means that 
state anxiety could not be used to differentiate between eyes-closed and eyes-open 
conditions in non-linear HRV dimensions. This distinction is yet to be accounted 
for in future studies on individual differences and personality traits. We were unable 
to find well-documented instances of gender differences pertaining to the BIS/BAS 
scales. Note that a relatively small sample in this study might have prevented our 
detection of more significant gender differences in BIS/BAS. Age had a significant 
effect on state-anxiety, but not on any STQ subscale. Future studies would no doubt 
benefit from a larger sample size with a greater age range.  

In conclusion, the non-linearity of many biological processes (e.g., HRV and 
brain functioning) (Mattei 2014) means that linear indices must be combined with 
non-linear indices for the prediction of complex behaviors. The present study found 
that non-linear HRV indices were independently predictive of several physiological 
and affective states under resting-state conditions. In such cases, conventional HRV 
indices in the time- and frequency-domains lacked any predictive ability. In the 
future, researchers should consider the influence of the HPA axis on the modulation 
of HRV indices, and particularly on indices pertaining to heart rate entropy and 
recurrence quantification analysis. We recommend collecting data pertaining to 
cortisol levels and sex-hormones when replicating our experiment using other 
stress-related tasks. 
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