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Abstract. In this study, an electroencephalogram (EEG) recognition system is proposed
on single-trial motor imagery (MI) data. Fuzzy c-means (FCM) clustering is used for
the unsupervised recognition of left and right MI data by combining with selected active
segments and multiresolution fractal features. Active segment selection is used to detect
active segments situated at most discriminable areas in the time-frequency domain. The
multiresolution fractal features are then extracted by using modified fractal dimension
from wavelet data. Finally, FCM clustering is used as the discriminant of MI features.
The FCM clustering is an adaptive approach suitable for the clustering of non-stationary
biomedical signals. Compared with several popular supervised classifiers, FCM clustering
provides a potential for BCI application.
Keywords: Brain-computer interface (BCI), Electroencephalogram (EEG), Motor im-
agery (MI), Fractal dimension (FD), Fuzzy c-means (FCM)

1. Introduction. The brain-computer interface (BCI) providing analternative channel
to directly transmit messages to computers from the human brain by analyzing the brain’s
mental activities [1-6] is a new communication system. BCI systems based on the single-
trial analysis of motor imagery (MI) electroencephalographic (EEG) signals have grown
rapidly in the last decade [2]. It focuses on the recognition of left and right MIs using
event-related brain potentials (ERP), which reveal that they possess special characteristics
of event-related desynchronization (ERD) and synchronization (ERS) in mu and beta
rhythms over the sensorimotor cortices during MI tasks [7-9].
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The continuous wavelet transform (CWT) gives a highly redundant representation of
EEG signals in the time-scale domain. It can be applied for the precise localization of
ERP components [10], and however, it has heavy computation cost. The CWT and Stu-
dent’s two-sample t-statistics are adopted to off-line detect the location of active segments
through the time-frequency domain. Besides, feature extraction is a substantial topic that
greatly affects the classification success. That is, the better the extracted features are,
the higher the classification accuracy we can expect. The DWT and fractal dimension are
used to extract fractal features in multiscale for classification. Since the DWT is strong in
selecting features from multiresolution, it is an efficient and structured approach to ERP
representation [11].
Fractal dimension is one of the most common fractal features, which are used to express

fractal geometry [12] that provides a proper mathematical model to describe complex and
irregular shapes existing in nature. It has been applied to all kinds of biomedical signal
analyses, such as seizure onset detection in epilepsy [13,14] and image coding [15,16]. In
this study, the native EEG signals are decomposed into multi-scale bands by the DWT.
The multiresolution fractal feature vectors (MFFVs) are extracted from multiscale EEG
signals by calculating their fractal dimensions. That is, MFFVs simultaneously contain
important multiscale characteristics and fractal information in the time-scale space. The
MFFVs have been proven to achieve promising results in BCI classification [17], so they
are opted to use as features again in this study.
To recognize MI EEG data by supervised classifiers has been applied in many BCI

systems. Some of them, such as linear discriminant analysis (LDA) [18], multilayer per-
ceptron (MLP) [19] and support vector machine (SVM) [20,21], are very popular and
usually used for the discriminant. Moreover, the classifiers are supervised, whose param-
eters need to be trained in advance before on-line applications. Fuzzy c-means clustering
that is an unsupervised approach partitions a collection of feature vectors into a number
of subgroups based on minimizing the trace of a within-cluster scatter matrix [22,23].
EEG data are non-stationary and their characteristics vary as time, so the classification
accuracy of EEG data with unsupervised FCM clustering may lead to better results than
that with conventional supervised classifiers. Several properties of FCM clustering are
described in the following. The FCM is not essential to label data in advance before
training if it is used as a classifier, i.e., we can discriminate the data without a priori
knowledge. The FCM is able to make flexible partitions of a finite data set. The FCM is
an adaptive approach suitable to recognize non-stationary biomedical signals, such as MI
EEG data [24]. It is the reason the MI EEG data are recognized by the FCM clustering
in this study.
In addition, to evaluate the performance of FCM clustering, some supervised classifiers,

such as LDA, MLP and SVM, are used for comparison. The experimental results show
satisfactory results for the FCM. The results also indicate that it has great potential for
unsupervised classifiers in BCI applications. This paper is organized as follows: in Section
2, MI EEG data description and analyses are presented; Section 3 describes experimental
results and discussions on single-trial data; finally, conclusions are given in Section 4.

2. Materials and Methods. A flowchart of EEG signal analysis for single trial MI
classification is illustrated in Figure 1. The process chiefly consists of three steps: active
segment selection, feature extraction and fuzzy c-means clustering. Based on the CWT
and Student’s two-sample t-statistics, active segment selection detects the location of
active segments in the time-frequency domain. We then extract feature vectors with
proposed modified fractal dimension from the DWT data. Finally, we use fuzzy c-means
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clustering to classify the fractal feature vectors into two classes, left and right motor
imagery, without supervision.

Figure 1. Flowchart of proposed BCI system

2.1. Data description. The EEG data was recorded by the Graz BCI group [25-27]
from three subjects during a feedback experimental recording procedure. The task was to
control a bar by means of imagining left or right hand movements. The order of left and
right cues was random. The data was recorded on three subjects – the first subject, S1,
performed 280 trials, while other two, S2 and S3, each performed 320 trials. The length
of each trial was 8-9s. An example of a trial is given in Figure 2. The first 2s of the trial
were quiet, then an acoustic stimulus indicated the beginning of the experiment at t = 2s,
and a fixation cross + was displayed for 1s; then, at t = 3s, an arrow (left or right) was
displayed as a cue. (Only the data recorded between 3 and 8s were therefore considered to
be event-related.) At the same time, each subject was asked to move a bar by imagining
left or right hand movements according to the direction of the cue. The recordings were
made using a g.tec amplifier and Ag/AgCl electrodes; all signals were sampled at 128Hz
and filtered between 0.5 and 30Hz. Two bipolar EEG channels were measured using two
electrodes positioned at 2.5cm anterior and posterior to positions C3 and C4 according
to the international standard 10/20 system [28], as shown in Figure 3.

2.2. Active segment selection. Before features were extracted, each trial included a
redundant 5-s event-related window. In order to achieve efficient computation and high
classification accuracy it is important to reduce the length of this 5-s window by selecting
only a 1-s active segment, which is defined as the most representative in MI from the 5-s
window. The better the selected active segments, the higher the classification accuracy.

The CWT in the time-frequency domain [29] is applied here for precise localization of
the ERP components. In this study, active segment selection based on the CWT and
Student’s two-sample t-statistics is performed to obtain the optimal active segment in the
time-frequency domain. The CWTs of EEG signals for each trial, which was of either left
or right MI, are analyzed in the C3 and C4 channels, respectively:

W (j, k) =

∫
R

f(x)
1√
j
ψ

(
x− k

j

)
dx (1)

where 1√
j
ψ
(

x−k
j

)
is the dilated and translated versions of the wavelet function ψ (x) at

scale j and shift k, and W (j, k) represents the CWT of the EEG signal f (x). W (j, k) is
represented as a 2D time-scale plot that retains the scale separation of ERP components
[29].
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Figure 2. Example of a trial

Figure 3. Electrode position

However, the 2D time-scale plot W (j, k) generated from the CWT is so noisy that it
is difficult to accurately locate the active segment. We smooth the power spectrum and
reduce the noise effects in the time-frequency domain. In addition, the best discriminant
region is not situated at a single point but lies in a range of time and scale. Higher classi-
fication accuracy can achieve from the acquired EEG signals by using a wider frequency
range than a narrower one [30]. It is because the wider range contains all the mu and
beta rhythmic components that are important for mental task classification. Hence, the
power spectrum is accumulated along the scale direction within the wide frequency range.
The resulting profile represents the brain ERP responses for left and right MI. Student’s
two-sample t-statistics between the left and right MI are evaluated from the training data
set in both C3 and C4 channels:
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t (k) =
|µL(k)− µR(k)|√(

(NL−1)·σ2
L(k)+(NR−1)·σ2

R(k)

NL+NR−2

)(
1

NL
+ 1
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) (2)

where L and R represent left and right MI, respectively, Ns denotes the number of trials in
state s, and µs(k) and σ

2
s(k) stand for the mean and variance, respectively, of the profile

in state s from the training data set. The denominator in Equation (2) indicates the
pooled variance of left and right MI. t (k) with different time k can form a 1D profile with
respect to time, but it contains different characteristics. The peaks in the profile t (k)
imply that there are local maximal differences between left and right MI in the time-scale
domain, meaning the left and right MI are best discriminated at a particular time and
scale range. The t-statistics are used to select the optimal active segment. The active
segment of length 1s is then selected, with its center being the peak after the C3 and C4
channels are concatenated.

2.3. Feature extraction. Prior to classification, feature extraction is performed on the
selected 1-s active segment rather than directly classifying the native EEG data without
feature extraction. Feature extraction greatly affects the results of classification; accord-
ingly, the better the extracted features, the higher the classification accuracy we can
expect. In this study, we first band-pass filtered the active segments to the wide fre-
quency range that contains all mu and beta rhythmic components using a Butterworth
band-pass filter. We then performed the discrete wavelet transformand fractal dimension
on the filtered active segments.

Multiresolution analysis decomposes a signal into numerous details at various resolu-
tions, where each resolution represents a class of distinct physical characteristics within
the signal. In other words, a signal is characterized with the formulation by decomposing
it into sub-bands, and each sub-band can be treated individually based on its characteris-
tics. Multiresolution representation of the filtered active segments is achieved by discrete
wavelet transform (DWT). The active segment A for each trial is represented in terms of
the DWT as:

A (x) =
∞∑

k=−∞

SJ (k) 2
J/2ϕ

(
2Jx− k

)
+

J∑
j=1

∞∑
k=−∞

Dj(k)2
j/2ψ

(
2jx− k

)
(3)

where SJ (k) and Dj(k) represent the approximation and detail spaces of A, respectively,
and 2J/2ϕ

(
2Jx− k

)
and 2j/2ψ (2jx− k) denote the dilated and translated versions of the

scaling function ϕ(x) and wavelet function φ(x), respectively. The active segment A is
then decomposed into individual subbands SJ , DJ , . . . , D1.

Fractal geometry provides a proper mathematical model to describe a complex shape
that exists in nature with fractal features. Fractal dimension (FD) is one of the most
popular fractal features, and we opted to use the FD due to the fact that it is relatively
insensitive to signal scaling and shows a strong correlation with human judgment of surface
roughness [31]. Several approaches for estimating the fractal dimension of signals and
images have been presented [31-33].

The differential box counting (DBC) method, which covers a wide dynamic range with
a low computational complexity, is popular and frequently used. However, there are two
significant faults in the original DBC method, which make the estimation of fractal di-
mension inaccurate. We have proposed a solution, namely the modified fractal dimension
[17], to resolve these issues. First, the original DBC method is based on the difference
between the minimum and maximum rectangle numbers, and is easily disturbed by noise.
As the standard deviation of the amplitude represents the dispersion of the signal, we use
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the standard deviation to replace the difference in rectangle numbers in the original DBC
method. Second, DBC produces a stair-like function and may result in the underestima-
tion of fractal dimension. We overcome this fault by means of the floating calculation of
fractal dimension.
The multiresolution fractal feature vectors (MFFVs) are formed by concatenating vari-

ous-scale fractal features, calculated from the active segment itself and all of its subbands
using the modified fractal dimension. The MFFVs reflect the roughness of the MI data
at multiresolution.

2.4. Fuzzy c-means clustering. Clustering is a process for classifying training samples
in such a way that samples within a cluster are more similar to one another than samples
belonging to different clusters. Similarity measures employed to classify samples depend
on the object characteristics, e.g., distance, vector and entropy. Many clustering ap-
proaches have also been demonstrated such as the hard clustering algorithm [34,35] and
the soft (fuzzy) clustering algorithm, each of which has its own special characteristics.
There are many applications in clustering strategy [36,37]. The fuzzy clustering method
assigns the sample with a number, m, between zero and one described as a membership
function. In this paper, fuzzy clustering method is to classify the feature vectors extracted
from the original EEG data, and recognize complicated brain mental tasks, such as left
and right motor imagery.
The FCM clustering algorithm was first introduced by Dunn [38], the related formula-

tions and algorithms were extended by Bezdek [39]. The FCM approach, like the conven-
tional clustering techniques, minimizes an objective function in the least squared error
sense. For class number c (c ≥ 2), sample number n and fuzzification parameter m
(1 ≤ m < ∞), the algorithm chooses ui : X → [0, 1] so that

∑
i ui = 1 and wj ∈ Rd for

j = 1, 2, . . . , c to minimize the objective function.

JFCM =
1

2

c∑
j=1

n∑
i=1

(ui,j)
m ∥xi − wj∥2, (4)

where ui,j is the value of jth membership grade on ith sample xi. The cluster centroids
w1, . . . , wj, . . . , wc can be regarded as prototypes for the clusters represented by the mem-
bership grades. For the purpose of minimizing the objective function, the cluster centroids
and membership grades are chosen so that a high degree of membership occurs for samples
close to the corresponding cluster centroids. The steps of the FCM algorithm are listed
below.

Step 1. Initialize the cluster centroids wj (2 ≤ j ≤ c), fuzzification parameterm (1 ≤ m <
∞) and the value ε > 0. Give a fuzzy c-partition U (0) and t =1.

Step 2. Calculate the membership matrix U (t) = [ui,j] by

ui,j =

(
1

(di,j)
2

)1/(m−1)

c∑
l=1

(
1

(dl,i)
2

)1/(m−1)
, (5)

where di,j is the Euclidean distance between the training sample xi and the class
centroid wj.

Step 3. Update the class centroids by

wj =
1

n∑
i=1

(ui,j)
m

n∑
i=1

(ui,j)
m xi for every j (6)
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Step 4. Compute ∆ = max
(∣∣U (t+1) − U (t)

∣∣). If ∆ > ε, t = t + 1 and go to Step 2;
otherwise, stop the process.

(a) Mean CWT for MI data (b) Variance of CWT for MI data

(c) Student’s two-sample t-statistics

Figure 4. Procedure for active segment selection

3. Results and Discussion. We demonstrate the process of active segment selection
in Figure 4, which shows the detailed procedure for selecting the active segment in the
time-frequency domain from the 5-s event-related window. The original 5-s event-related
window in each trial is too redundant to make the computation efficient and the classi-
fication accurate. It is important to select most representative segment by reducing its
original 5-s length to a 1-s window. In Figure 4(a), we show the mean CWT of the MI
data from a subject; the variance of the CWT for the same subject is shown in Figure
4(b). After accumulating the power spectrum along the scale direction within the wide
frequency range, we can then obtain Student’s two-sample t-statistics, as illustrated in
Figure 4(c).

The classification tests for MI data are in this study carried out using ten-fold cross
validation. More specifically, the dataset for each subject is divided into ten subsets, and
the following procedure is repeated ten times. Each time, one of the ten subsets is used
as the test set and the other nine are used as training set. The average recognition rate is
immediately evaluated across all ten folds. The classification accuracy of FCM clustering
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for MFFV features is compared between without and with active segment selection to
evaluate the efficacy of proposed active segment selection. In this experiment, in the
case of “without active segment selection”, the features are extracted from the 5-s event-
related window. The comparisons of classification accuracy are listed in Table 1. The
results show that the average accuracy for without active segment selection is 71.4%, while
that for with active segment selection increases to 83.1%. Accordingly, it indicates that
the proposed segment-selection method can significantly improve the overall performance
in MI recognition. In other words, after using the proposed MFFV features together with
active segment selection, classification accuracy is greatly improved for all subjects.
Furthermore, we perform two-way ANOVA to validate whether the use of active seg-

ment selection are significantly different or not. The results show that the classification
improvement is significant (p-value 0.0511). In other words, active segment selection can
extract essential information from event-related windows to further improve the efficiency
and accuracy.
An unsupervised FCM method is proposed for left and right MI classification from

single-trial EEG data in this study. The FCM algorithm is implemented to recognize left
and right MI data without any training in advance. As FCM clustering is an unsuper-
vised approach that partitions a collection of feature vectors into a number of subgroups
based on minimizing the trace of a within-cluster scatter matrix, it is adopted to auto-
matically classify MFFVs into two clusters, left and right MI. Moreover, EEG data are
non-stationary and their inherent characteristics vary with time. The classification of
MI EEG data using unsupervised FCM clustering may result in a better generalization
performance than conventional supervised classifiers. Some attractive properties of FCM
clustering are summarized as follows: first, FCM clustering is an unsupervised method,
discriminating the data without labeling them before training; second, FCM clustering
is capable of making flexible partitions of a finite data set; and third, FCM clustering
is a robust approach suitable for the classification of non-stationary biomedical signals.
Therefore, we use FCM clustering for the classification of MI EEG data in this study.
We compare the performance of fuzzy c-means clustering with three supervised classifiers
that are widely-used and have been shown to provide good results in BCI studies. The
first classifier is linear discriminant analysis (LDA) [18], used to find the direction in the
feature space along which the distance of the means relative to the within-class scatter
reaches a maximum. The second classifier is a multilayer perceptron (MLP) with one hid-
den layer and sigmoid activation functions [19]. The third classifier is a nonlinear support
vector machine (SVM) using a radial basis function (RBF) kernel [20], which is used to
classify the feature patterns based on minimum error risk criterion. The optimal values
for the parameters, weights and biases of all supervised classifiers were estimated using
the aforementioned ten-fold cross validation methodology.

Table 1. Comparison of classification accuracy for FCM between without
and with active segment selection

Classification
Subject 1 Subject 2 Subject 3 Average

Two-way ANOVA
Accuracy (FCM) (p-value)
Without Active

74.3% 71.6% 68.4% 71.4%

0.0511
Segment Selection

With Active
88.1% 77.8% 83.3% 83.1%

Segment Selection
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Table 2. (a) Comparison of classification accuracy among LDA, MLP,
SVM and FCM methods; (b) two-way ANOVA and multiple comparison
tests for classification accuracyamong LDA, MLP, SVM and FCM methods

Classification Accuracy [%] Subject 1 Subject 2 Subject 3 Average
LDA 82.9 74.3 81.7 79.6 ± 3.8
MLP 86.3 78.9 82.4 82.5 ± 3.0
SVM 86.7 79.6 84.6 83.6 ± 3.0
FCM 88.1 77.8 83.3 83.1 ± 4.1

(a)

µi − µj, µ1 µ2 µ3p-value
µ2 0.1284
µ3 0.0293 0.1869
µ4 0.0808 0.5972 0.6261

(b)

An experiment was performed to assess the performance of the unsupervised fuzzy c-
means clustering method. Table 2(a) shows the comparisons of classification accuracy
among the LDA, MLP, SVM and FCM methods. All classifiers were used with the same
selected active segments in this table; in other words, the listed values demonstrate only
the deviations of performance among different classifiers. For Subject 1, the best recog-
nition rate was achieved using FCM as the classifier, while the classification obtained
using LDA had the worst recognition rate, the difference between the best and worst
recognition rates being 5.2%. Moreover, using SVMas the classifier obtains the second
highest recognition rate, which was only 1.4% less than the best one. For Subject 2, the
best recognition rate was obtained using SVM as the classifier, while the classification
obtained using LDA had the worst recognition rate. For Subject 3, the best and worst
recognition rates were found to be the same as those of Subject 2. Overall, the best aver-
age recognition rate (83.6%) was obtained using SVM, while using LDA yielded the worst
average recognition rate (79.6%), the difference being 4.0%. Moreover, FCM obtained the
second highest recognition rate (83.1%), which is only slightly less (0.5%) than that of
SVM.

In addition, two-way ANOVA and multiple comparison tests are performed again to
test if the classification accuracy among classifiers is significantly different. The tested
results are listed in Table 2(b). It denotes that there is significant difference between LDA
and FCM (p-value 0.0808). Overall, FCM has a potential in BCI applications.

We observe that classification with SVM gives the best results for two subjects, and
classification with FCM leads to the best results for one subject. This can be explained
by the fact that FCM clustering is appropriate for the classification of non-stationary MI
EEG signals because it is a robust discriminator. Traditional supervised classification
methods, such as MLP, have suffered from difficulties in generalization, often obtaining
models that over-fit the training data, which is why we chose to apply FCM clustering in
the classification of MI EEG data in this study. In addition, FCM clustering is considered
a good classifier because it is an unsupervised clustering-based method. For BCI work,
FCM clustering does not need to train the parameters of the classifier in advance, and
it is suitable for dealing with non-stationary biomedical data sets. In summary, FCM is
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suitable for mental task classification. The difference between the classification results
of FCM and SVM is small for all subjects; however, the computation time with SVM is
larger than that with FCM. If we take the computation time into account, FCM is likely
the most promising classifier among the four tested in this study in the classification of
MI EEG data.

Table 3. (a) Comparison of AUC among LDA, MLP, SVM and FCM
methods; (b) two-way ANOVA and multiple comparison tests for AUC
among LDA, MLP, SVM and FCM methods

AUC Subject 1 Subject 2 Subject 3 Average
LDA 0.79 0.70 0.75 0.75 ± 3.1
MLP 0.81 0.79 0.80 0.80 ± 2.7
SVM 0.83 0.78 0.82 0.81 ± 2.5
FCM 0.85 0.77 0.81 0.81 ± 2.7

(a)

µi − µj, µ1 µ2 µ3p-value
µ2 0.1192
µ3 0.0342 0.4226
µ4 0.0028 0.6220 1.0000

(b)

Another popular approach, namely the receiver operating characteristics (ROC) curve,
is also used to evaluate the performance of proposed method. The ROC curve is a plot of
the true positive rate against the false positive rate for every possible cutoff of a diagnostic
test. The performance is measured by the area under the ROC curve (AUC), which is
used to describe the probability of random samples assigning to the correct class. The
comparison of AUC among LDA, MLP, SVM and FCM methods is listed in Table 3(a).
For Subject 1, using FCM clustering achieved the best AUC, while the worst AUC was
obtained using LDA, the difference between them being 0.06. In addition, using SVM as
the classifier obtained the second highest AUC, which was only 0.02 less than the best
one. The best AUC was obtained using MLP as the classifier for Subject 2, while using
SVM achieved the best AUC for Subject 3. The worst AUC was found when LDA was
used as the classifier for all the three subjects. Overall, the best average AUC (0.81) was
obtained using SVM and FCM, while using LDA yielded the worst average AUC (0.75),
the difference being 0.06. The results also indicate that FCM clustering is a potential
approach for MI classification.
Additionally, we perform two-way ANOVA and multiple comparison tests one more to

verify if the AUC among classifiers is significantly different. The verified results are listed
in Table 3(b). There are similar results to classification accuracy for the tests.

4. Conclusions. We have proposed an EEG analysis system for the single-trial recog-
nition of MI EEG data in this study. Associated with active segment selection and
multiresolution fractal features, the FCM is applied to discriminate left MI from right
one. Active segment selection is an effective scheme that selects active segments in the
time-frequency domain. It makes the length of original event-related window substantially
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reduce to a 1-s segment and increases the speed of feature extraction at the same time.
The multiresolution fractal features MFFVs are then obtained using proposed modified
fractal dimension from DWT data. The features are so good and discriminative that they
can enhance the classification of mental tasks. Finally, the FCM is used for the discrim-
inant of MI EEG data. In addition, the FCM is not only a robust approach suitable for
the classification of non-stationary MI EEG signals, but is also capable of making flexible
partitions of a finite data set. The experimental results demonstrate that the recognition
with the FCM possesses promising potential in the application of BCI works.
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