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Abstract. In functional magnetic 
resonance imaging (fMRI) studies, statistical 
parametric maps (SPMs) plots in an 
anatomical background those voxels 
exceeding a p-value threshold. In this study, 
we explore some limitations of a sole use of p-
values including the false discovering 
rate (FDR) control over experimental-wise 
error rates. As a comparison, we also include 
the receiver-operator characteristic (ROC) 
curve approach for finding the optimal decision 
threshold. In a real data example, we apply 
different methods to analyzing the same data 
set. The results show that both p-value and 
ROC approaches suggest similar findings
when functional images are less contaminated 
by noise. The FDR control of experimental-
wise errors is sensitive to the proportion of 
voxels being classified as active. We finally 
discuss the use of different approaches for 
analyzing fMRI data. 
Keywords: FDR; Reproducibility 
analysis; ROC; SPM .  

 
1. Introduction 

     Research findings in functional magnetic 
resonance imaging (fMRI) studies are normally 
summarized using statistical parametric maps 
(SPMs) which highlight in an anatomical 
background those voxels exceeding a p-value 
threshold (e.g., p < 0.05). Brain voxels with 
small p-values are not just more responsive to 
experimental stimuli as compared with a 
control condition, they are also much greater in 
response magnitude. Empirical studies have 
shown that there are functional regions 
consistently engaged in experimental tasks 
with smaller response amplitude, however. It is 
important to acquire other thresholding 

methods which are sensitive to activity in those 
regions, but less dependent on the response 
magnitude. In this study we formally contrast 
and compare between p-value approach and 
the receiver-operator characteristic (ROC) 
curve method for finding the optimal decision 
threshold for classifying image voxels into the 
active/inactive status. In the empirical example, 
we consider a data set which was collected for 
studying the representation of objects in the 
human occipital and temporal regions via an 
on-and-off paradigm (Ishai et al., 2000). The 
error rates of different thresholding methods 
will be computed based on the empirical data 
set. In the next section, we will discuss the 
background behind the p-value thresholds 
including approaches for controlling the family-
wise error rate (FWER). The ROC thresholding 
method will also be introduced. Based on the 
aforementioned data set, we will show that 
different thresholding methods will give 
convergent results when image data are less 
contaminated by noise. For noisy images, 
however, the p-value approach will bypass 
many important activities. The ROC approach 
along with a reproducibility criterion, on the 
other hand, offers enough findings that go 
beyond those obtained by the SPM approach. 
We finally discuss the use of different methods
for analyzing fMRI data.  

2. Method 

     fMRI experiments are usually performed 
over a period of time and are divided into 
smaller experimental runs to allow subjects 
taking a rest between runs. In this section, we 
will briefly review methods for computing 
decision statistics in fMRI data analyses, and 
compare the different thresholding methods for 
assigning voxels to the active/inactive status.  
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2.1  Decision statistics 

Assume that the image data are pre-
whitened by removing autocorrelations and 
other artifacts. In the SPM generalized linear 
model, the fMRI responses in the ith run can be 
expressed as 

iiii eXy �� � ,       

where yi is the vector of pre-whitened image 
intensity in a particular voxel; Xi is the design 
matrix decided by the stimulus presentation, 
and i�  is the vector containing the unknown 
regression parameters. With a random effect 
model, the regression parameters i�  are 
additionally assumed to be random from a 
multivariate Gaussian distribution with 
common mean � and variance � . The 

empirical Bayes estimate of i�  in the model 
will shrink all estimates toward the mean � , 
with greater shrinkage at noisy runs. By 
analogy to the generalized linear model, t-
values of a particular contrast within runs can 
be computed by normalizing the estimated 
�

i� using the standard errors of ie . For each 
design contrast, there are M such t-values, 
and M is the total number of runs. The overall 
T-values can also be computed for parameters 
in �  using the corresponding standard errors 
in � .  
 
2.2  Thresholding methods 
 

If the true active/inactive status is known, 
and a decision threshold *k  is available, the 
voxel-wise T values can be grouped into a 2x2 
table (see Table 1). In the table, �  denotes 
the proportion of truly active voxels. The 
proportion of correct classification is 

oP a d� � , and its expected value is 

( ) ( )(1 )cP a c b d� �� � � � � . In the literature, 
the Kappa index (Cohen 1960), false 
discovering rate (FDR), FWER, and Type-I 
error (or false alarm) are defined respectively 
as Kappa = ( ) /(1 )o c cP P P� � , FDR = c/(a+c), 

FWER = c, and Type-I error = /(1 )c �� . 
Given an experimental contrast, the exceeding 
probability (p-value) of a T-value can be 
computed using a student t-distribution with 

specified degrees of freedom (i.e., M minus 
the number of unknowns associated with � ). 
The p-values of in-brain voxels can be ordered 
from the most to least significance. The SPM 
threshold is a cut-off point on the ordered p-
values such that anything below the point is 
classified as active. The easiest way would be 
classifying any voxel having 0.05p 	  as 
active. In the fMRI literature, statistical issues 
associated with thresholding methods mainly 
concern with the control of the FWER. As p-
values are weakly correlated with each other, 
the Bonferroni correction classifies 

0.05 /p V	  as active for controlling the 
FWER at 0.05
 � , where V is the total 
number of voxels considered. The correction 
becomes too stringent as V increases, and the 
sensitivity of statistical tests deteriorates. 
 

There are several sharper Bonferroni 
procedures proposed, such as the FDR control 
proposed by Benjamini and Hochberg (1995). 
Let (1) (2) ( )Vp p p� � ��  be the ordered 
sequence of p-values from the most to least 
significance. In the proposed FDR control, a j-
th voxel with ( )jp  in the sequence is 

classified as active if ( )jp j
V



	 . This 

procedure was originally introduced by Simes 
(1986) for a weak control of the FWER at the 

  level (e.g., 0.05
 � ), and theoretically 
proven by Benjamini and Hochberg of its 
equivalence to controlling the FDR at the 
  
level. The procedure can also be viewed as a 
maximization procedure to enlarge a+c in 
Table 1 as much as possible, and at the same 
time, to constraint c/(a+c) within 
 . It is true 
that the FDR is identical to FWER when �  is 
zero, and becomes more powerful as �  
increases to one. In a sense, the FDR control 
is more sensitive to active voxels than the 
conventional Bonferroni correction when the 
proportion of truly active voxels is greater 
compared with the proportion of truly inactive 
voxels. In most of the fMRI studies, however, 
this is unlikely to occur because �  is often 
time a smaller proportion (e.g., less than 0.2 in 
our empirical study). Therefore, the FDR 
control might not perform better as desired 
(Nichols and Hayasaka 2003). In the empirical 
study, we will show that controlling the family-
wise error rate with either the Bonferroni or 
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FDR procedures enlarges the Type-II error 
rate ( /b �  in Table 1), and makes the p-value 
approach less sensitive to active voxels 

 
The true status of each voxel is unknown, 

but can be estimated using the t-values within 
runs derived from the random effect model. If 
we select K distinct thresholds in increasing 
order of magnitude, these t-values (in absolute 
value) of size M can be classified into K+1 
groups (e.g., K=10 in our empirical study). The 
count of t-values in each group is shown in 
Table 2. In the table, 

kAP  denotes the 

conditional probability of t values assigned to 
the k-th group given the truly active status, and 

kIP  carries the same definition given the truly 

inactive status. Both are unknown parameters 
in the table with observed counts k� . If a 

threshold *k  is selected, sensitivity and the 
false alarm rate are defined respectively as 

*
k

K

A Ak k
P P

�

 �  and *

k

K

I Ik k
P P

�

 � (Refer to 

Table 1). The ROC curve is a bivariate plot of 
AP  and IP across all possible thresholds. By 

considering all in-brain voxels, the unknown 
parameters can be estimated by maximizing 
the likelihood of observing the patterns of 

k� in a mixed multinomial model (the two 
conditional distributions given the true status in 
Table 2). When maximizing the likelihood, we 
also assume a prior distribution for the mixing 
proportion � . After estimating K pairs of 
( AP , IP ), the ROC curve can be interpolated 
via a smoothed function. In this study, we 
consider the decision threshold *k which 
maximizes the Kappa value on the ROC curve. 
Unlike the p-value approach relying on the 
overall T-values, the ROC method classifies a 
within run t-value as active if its value is 
greater than or equal to *k . In the empirical 
example, we will show that a voxel is classified 
as active if the t-values of M runs suggest that 
the decision is strongly reproducible across 
runs.  

 
3. Empirical Example 

In the empirical example, we consider a 
data set with six subjects involved, each 
performing twelve runs of a delayed match-to-
sample task with either photographs or line 

drawings (Ishai et al., 2000). In the task, a 
target stimulus (houses, faces or chairs) was 
followed, after a 0.5 sec delay, by a pair of 
choice stimuli presented at a rate of 2 sec. 
Subjects indicated which choice stimuli 
matched the target by pressing a button with 
the right or left thumb. All runs involved 
phased, scrambled pictures presented at the 
same rate as the control stimuli. In this study, 
we inserted three orthogonal contrasts in the 
design matrix of the generalized linear model -
- namely, meaningful objects (i.e., faces, 
houses and chairs) versus the control 
condition (i.e., phased, scrambled pictures), 
faces versus houses/chairs, and houses 
versus chairs. 

In the data analysis, the effects due to 
different contrasts for each run along with the 
average effect across runs were computed 
using the random effect model for each 
individual subject. Table 3 gives the maximum 
Kappa value, and the corresponding estimated 
FDR and Type-I error rate for each subject and 
each design contrast. In this data example, the 
Kappa values are higher when comparing 
meaningful objects with the control condition. 
Also, Type-I errors range from 0.03 to 0.04, 
and FDRs range from 0.23 to 0.37 for this 
contrast. When comparing between objects 
(e.g., faces versus houses/chairs), the Kappa 
values are reduced to a range of 0.26 to 0.32, 
and the FDRs increase to as high as 0.58. As 
was indicated, the proportion of truly inactive 
voxels (1 – �) is generally much greater than 
that of truly active voxel �. In real applications, 
the total number of voxels that can be 
classified as active (i.e., a+c) must be 
extremely small in order to control the FDR at 
the .05 or 0.10 level.  
 
   By maximizing Kappa for selecting the 
decision threshold, the size of Type-I errors 
can still be controlled within a reasonable 
range (i.e., 0.03-0.10). Distributions of the 
averaged T-values across subjects are plotted 
in Figure 1 for comparing meaningful objects 
with the control condition. Here we define a 
voxel to be strongly reproducible if its active 
status remains the same in at least 90% of 
runs, and moderately reproducible in 70-90% 
of the runs. The averaged T-values are plotted 
separately for strongly and moderately 
reproducible voxels. As a comparison, we also 
plot the average values for those voxels 
consistently classified as inactive across runs. 
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It is interesting to note that strongly and 
moderately reproducible voxels have a sizable 
overlap in their T-values. Neuroimaging 
research has recently suggested that the 
precuneus is tonically active in a resting state 
and deactivated when subjects are engaged in 
a wide variety of cognitive tasks (Raichle et al. 
2001). The T-values of voxels in the 
precuneus showing increased and decreased 
responses in the matching task are also 
plotted in Figure 1. On average, the magnitude 
of T-values does not directly imply 
reproducibility. The activation status using a 
single cutoff point (p-value) on the T-values 
could bypass many strongly reproducible 
findings. It is also interesting to note that the 
Type-I errors for each design contrast differ 
only within a range of 0.01 to 0.02 even though 
images of individual subjects are noisy to a 
great and less degree.  
 
   The activation maps for comparing objects 
with the control condition are plotted in Figure 
2 for Subjects 2 and 3. Functional images of 
Subject 3 are less contaminated by noise, and 
give the highest Kappa value relative to other 
subjects in the same experiment. The 
activation maps of this subject using the 
strongly reproducible criterion are clearly 
visible. For this subject, moderately 
reproducible voxels are mainly distributed in 
the neighborhood of strongly reproducible 
voxels. Subject 2 has the lowest Kappa value, 
although moderately reproducible voxels are 
still spatially closer to the strongly reproducible 
voxels except for a few regions in the 
cerebellum. The ensuing SPMs given a T-
value threshold closely resemble those 
strongly reproducible maps when subjects are 
less contaminated by noise. In the figure, there 
is essentially no activation region in the SPMs 
when controlling the FDR at .05 for subjects 
with either the high or low degree of noise 
contamination.  

 
4. Discussion 

The ROC method along with the strongly 
reproducible criterion have been designed to 
maximize the between run reproducibility via 
the random effect model. Although the 
threshold selected by maximizing the Kappa 
value can control the empirical Type-I error 
within a reasonable range, the FDR suggested 
that there are a sizable false positive hits 

among those voxels being classified as active. 
By counting on the strongly reproducible 
criterion, the method still preserves enough 
true positive voxels and bypasses those false 
positive. This has been the strength of using 
the ROC approach and the strongly 
reproducible criterion. The FDR is sensitive to 
the ratio between � and (1- � ). In 
applications, a control of FDR at the 0.05 or 
0.10 level should be too stringent to find any 
active voxels. Although there have been many 
new suggestions for improving the original 
FDR proposed by Benjamini and Hochberg, 
the results in Figure 2 suggest that both SPMs 
without controlling the FWER and 
reproducibility maps closely resemble each 
other when functional images are less 
contaminated by noise.  
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Table 1: Cross-classification of voxels given a decision threshold. 

  Decision
 

 

  Inactive Active  

True  
Status 

 Active b = �( 1 - PA ) a = �PA � 

Inactive d = ( 1 – �)( 1 – PI ) c = (1 – �)PI 1 - � 

  
b+d a+c a+b+c+d=1 

 
Table 2: Observed counts and conditional probabilities in the ROC analysis. 

 

True 
Status

 Decision  

� Inactive Active � 
0 1 2 ….. K  

Active 
0AP

1AP
2AP …..

kAP
0

1
k

K

Ak
P

�
��  

Inactive 
0IP

1I
P

2IP …..
kIP

0
1

k

K

Ik
P

�
��  

Counts 0� 1� 2� ….. k�
 

� �
�

K

k k M
0
�

 
 

Table 3: Kappa and error rates associated with different design contrasts. 
 

 Objects vs. Control Faces vs. Houses/Chairs Houses vs. Chairs 

Subj. Kappa FDR Type-I Kappa FDR  Type-I Kappa  FDR Type-I 

          
1 0.54 0.25 0.04 0.26 0.58 0.10 0.26 0.57 0.10 
2 0.43 0.37 0.06 0.27 0.55 0.09 0.26 0.58 0.10 
3 0.63 0.18 0.03 0.32 0.50 0.08 0.29 0.52 0.09 
4  0.59 0.23 0.04 0.28 0.55 0.10 0.29 0.52 0.09 
5 0.54 0.25 0.04 0.27 0.55 0.10 0.27 0.54 0.10 
6 0.58 0.25 0.03 0.29 0.53 0.08 0.30 0.52 0.09 
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Figure 1: The density distributions of average T values across the 6 subjects for comparing the 
meaningful objects with the control condition. The area under different distributions is normalized to 
have the same value of one. The average values for voxels consistently classified as inactive in the 
12 runs are plotted in black; those consistently classified as active in the 12 runs are plotted in red; 
voxels classified as moderately reproducible in the 12 runs (i.e., 8 to 10 runs) are plotted as dotted 
line in the figures. Those strongly reproducible voxels located in the precuneus with either positive 
or negative T values are plotted in blue. 
 
  

                                   Subject 2             Subject 3 

                               y= -68     y= -63      y= -68    y= -63 

Figure 2: The activation maps for comparing meaningful objects with phased scrambled 
photographs for Subjects 2 and 3 in the Ishai et al. study. Colored voxels in yellow have positive T 
values and those in green have negative T values. 

1671747


