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Event-related potentials (ERPs) induced by visual perception and

cognitive tasks have been extensively studied in neuropsychological

experiments. ERP activities time-locked to stimulus presentation and

task performance are often observed separately at individual scalp

channels based on averaged time series across epochs and experimental

subjects. An analysis using averaged EEG dynamics could discount

information regarding interdependency between ongoing EEG and

salient ERP features. Advanced tools such as independent component

analysis (ICA) have been developed for decomposing collections of

single-trial EEG records into separate features. Those features (or

independent components) can then be mapped onto the cortical surface

using source localization algorithms to visualize brain activation maps

and to study between-subject consistency. In this study, we propose a

statistical framework for estimating the time course of spatiotempo-

rally independent EEG components simultaneously with their cortical

distributions. Within this framework, we implemented Bayesian

spatiotemporal analysis for imaging the sources of EEG features on

the cortical surface. The framework allows researchers to include prior

knowledge regarding spatial locations as well as spatiotemporal

independence of different EEG sources. The use of the Electromagnetic

Spatiotemporal ICA (EMSICA) method is illustrated by mapping

event-related EEG dynamics induced by events in a visual two-back

continuous performance task. The proposed method successfully

identified several interesting components with plausible corresponding

cortical activation topographies, including processes contributing to the

late positive complex (LPC) located in central parietal, frontal midline,

and anterior cingulate cortex, to atypical mu rhythms associated with

the precentral gyrus, and to the central posterior alpha activity in the

precuneus.
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Introduction

For several decades, researchers have proposed techniques for

localizing neural generators of event-related potentials (ERPs)

associated with visual and other stimuli presented during

performing EEG tasks (Scherg and Cramon, 1986; Liu et al.,

1998; Baillet et al., 2001a). Because of the presence of instru-

mental and background noise as well as large inherent dynamic

variability, ERPs are normally averaged across subjects and

experimental trials before estimating their cortical origins both to

increase the signal/noise ratio and, at the same time, to reduce the

effects of non-neural artifacts (e.g., Tendolkar et al., 2000; Spencer

et al., 2001; Halgren et al., 2002; Liu et al., 2003). However,

averaged ERPs may filter out information regarding interdepen-

dency between ongoing EEG processes and salient ERP features. It

has been shown that collections of single EEG trials can be

decomposed into separate components using linear decomposition

methods including principal component analysis (PCA) and

independent component analysis (ICA, Makeig et al., 1996,

2002). The scalp maps associated with ERP-related EEG compo-

nents can then be input into a source localization algorithm to

estimate their EEG cortical sources. Identification of sources using

ICA (at stage I), followed by estimation of their cortical locations

(stage II), allows elimination of instrumental and physiological

artifacts (Jung et al., 2000, 2001). This two-stage procedure has

been claimed to yield more precise estimation of pointwise

equivalent dipole source locations (e.g., Vigário et al., 1999; Tang

et al., 2000; Zhukov et al., 2000; Cao et al., 2001).

In contrast to the above two-stage procedure, some researchers

have attempted to localize equivalent dipole sources by simulta-

neously estimating their orientations and locations as well as time

courses. For example using a time-varying equivalent dipole

model, multi-channel ERPs were modeled as a summand of

projections from a set of equivalent dipoles with fixed orientations

and locations, yet time-varying amplitudes and polarities (Scherg

and Cramon, 1985, 1986). This algorithm was implemented under

the assumption that the number of sources was known or could be

http://www.sciencedirect.com
mailto:arthur@stat.sinica.edu.tw
http://dx.doi.org/10.1016/j.neuroimage.2006.02.044


A.C. Tsai et al. / NeuroImage 32 (2006) 195–207196
estimated from singular-value decomposition. The MUSIC/RAP-

MUSIC algorithm by Mosher et al. (1992) and Mosher and Leahy

(1998) was a more computationally efficient approach that built an

equivalent dipole source model using a PCA subspace projection.

The two approaches were strongly dependent on the second-order

statistics of the spatiotemporal EEG data averages.

While equivalent dipole models are ideal for modeling point

sources, they may perform poorly for estimating neural sources

distributed across one or more cortical regions, for instance, those

sources induced by high-level cognitive processes (Nunez et al.,

1991, 1994; Kincses et al., 1999). It is desirable to develop

strategies for estimating current density sources that accommodate

the source distributions rather than a skeleton of discrete equivalent

cortical dipoles. Accordingly, minimum-norm estimators have

been proposed that determine distributed cortical source regions

with reasonable configurations (Hämäläinen and Ilmoniemi, 1984,

1994; Dale and Sereno, 1993). Because of computational

simplicity, these estimators have been widely adopted in empirical

studies (Liu et al., 1998; Moores et al., 2003; Fuchs et al., 1999).

The approach of Schmidt et al. (1999), on the other hand, directly

generalizes multiple dipole models to distributed current density

models by constructing and sampling from a posterior distribution

using Markov Chain Monte Carlo methods; the method performs

Bayesian source density estimation of the distributions of unknown

parameters with regard to the number, location, and extent of

source regions.

There is a broad consensus that the average ERPs recorded

during cognitive tasks are generated by multiple distributed sources

(Moores et al., 2003). Empirical studies have also found that time

courses of ERP features (e.g., the early visual N1 peak with

following alpha ringing) vary across scalp locations, consistent with

previous observations of multiple alpha rhythm sources with

overlapping scalp and brain topographies (Andrew and Pfurtsch-

eller, 1997; Lutzenberger, 1997;Makeig et al., 1999, 2002;Mangun,

1992). Therefore, equivalent dipole sources or current density

models that avoid decomposing ERP records into subcomponents

may not yield precise and spatially overlapping generators.

In this study, a spatiotemporal algorithm, Electromagnetic

Spatiotemporal Independent Component Analysis (EMSICA), is

proposed for simultaneously estimating spatiotemporally indepen-

dent EEG activities and the corresponding cortical source

distributions. The proposed approach decomposes the recorded

single-trial EEG data into spatiotemporally overlapping compo-

nents without averaging data from different trials. The cortical

source distributions estimated by the approach may be more

biologically plausible than the pointwise sources used in equivalent

dipole models. The properties of the components (i.e., scalp

topographies, ERP image activities, activity spectrums) returned by

EMSICA are similar to those returned by the standard ICA in the

sense that there is no constraint on spatial orthogonality (as that

with PCA), allowing a flexibility in accurately estimating the

spatially overlapping projections from functionally separable

sources (Makeig et al., 1999). The spatiotemporal framework of

EMSICA allows researchers to insert prior knowledge regarding

physical source constraints, spatial sparsity, and spatiotemporal

independence of the underlying EEG components.

The EMSICA procedure herein described, as applied to EEG

data, is verified with stimulus-event-related dynamics collected in a

visual Ftwo-back_ continuous performance task. The forward

model incorporated a realistic head model using structural

magnetic resonance (MR) brain images. Time courses and
topographies of several distinctive components will be shown,

including those contributing to the late positive complex (LPC) of

the target stimulus ERP located in the central parietal, frontal

midline, and anterior cingulate cortex, as well as components

producing atypical mu rhythms on the precentral gyrus and central

posterior alpha activity in the precuneus.
Methods

The spatiotemporal modality

Both theoretical and experimental evidence have shown that

scalp-recorded EEG signals are mainly produced by a summand of

field activities associated with large cortical pyramidal cells that

are typically oriented in parallel perpendicular to the cortical

surface. By determining cortical source location and orientation

constraints from MR brain images, the orientations of potential

sources can be assumed a priori. Consider the time-varying current

density q(t) Z RJ distributed at J tessellation elements with fixed

orientations in each cell of the volume domain at time t. Associated

with each current density contribution is a leadfield matrix L Z

RI � J that contains information about the geometry and conductivity

of the model. The data on the I sensors are acquired as

x tð Þ ¼ Lq tð Þ þ g tð Þ; ð1Þ

where g(t)
Z RI denotes the additive noise assumed to be white and

Gaussian which can be removed at the prewhitening stage in

applications.

With the known orientation of current density, a spatiotemporal

modality can be developed for source imaging based on the

cortically constrained, MRI-guided boundary element model. By

convention, we also assume that there exist densely distributed

sources located in the gray matter. Suppose that the configuration

of current density q(t) is constituted by a linear combination of

statistically independent time courses or activations s(t) Z RK that

is, q(t) = Bs(t) where B Z RJ � K is a weight matrix with elements

bjk that specifies the contribution of the kth source component to

the jth tessellation element on the cortex. The kth column of the B

matrix specifies the source activation topography on the cortical

surface, that is, how much the momentary field configuration

varies with the strength of the kth source component sk
(t). We

assume numerous spatial source components with different cortical

regions whose projections by volume conduction of the scalp

surface sum to the I outputs in noiseless mixing

x tð Þ ¼ LBs tð Þ: ð2Þ
In this model, the additive ‘‘noise’’ g(t) in Eq. (1) and the artifact

signals introduced by eye blinks, eye movements, and other scalp

muscle activity are not explicitly modeled, but rather manifested as

separate components, (see, e.g., similar treatments in those ICA

models by Beckmann et al., 2000; McKeown et al., 1998).

In a Bayesian framework, the inverse problem can be stated as

estimating the cortical source distributions as well as their

corresponding time courses from given data recorded on the I

sensors such that the posterior likelihood of the model

p B; s tð Þjx tð Þ; L
� �

” p x tð ÞjL;B; s tð Þ
� �

p B; s tð ÞjL
� �

ð3Þ

is maximized. The process of extracting the underlying sources can

be thought of as producing K spatiotemporal components with
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individual spatial distributions (specified as column vectors in B)

and time courses at times t (in s(t)).

The EMSICA approach

If the cortical activation topographies and temporal magnitude

of sources are independently distributed, the prior assumption in

Eq. (3) can be reduced to p(B,s(t)|L) ” p(B)p(s(t)). By treating s(t)

as nuisance parameters, Eq. (3) can be marginalized into

p Bjx tð Þ; L
� �

” p Bð ÞXds tð Þp x tð ÞjL;B; s tð Þ
� �

p s tð Þ
� �

: ð4Þ

Giving the leadfield matrix L, the goal of EMSICA is to find the

cortical source topographies, B, for the dependent sensor signals,

x(t), that makes the outputs u(t) K (LB)�1x(t) as independent as

possible, where u(t) is an estimate of the sources with elements uk
(t)

for k = 1, . . . ,K. Here, we assume that I =K to guarantee (LB) being

a square matrix. A non-square (LB) matrix is discussed in the

Discussion section. Because source components are assumed to be

independently distributed, the prior p(u(t)) can be written as a

product of prior probabilities of individual sources, i.e., p(u(t)) =

kkpk(uk
(t)). The integral on the right-hand side of Eq. (4) reduces to

1

det LBð ÞCkpk u
tð Þ
k

� �
; ð5Þ

which is the source likelihood for the observed data likelihood of

x(t). The derivation of Eq. (5) is similar to that of the infomax ICA

algorithm in a Bayesian framework by several authors (Pearlmutter

and Parra, 1996; MacKay, 1996; Knuth, 1997).

We will pay special attention to developing a learning algorithm

to recover the cortical activation topographies B using the prior

p(B). The elements in the kth column of B can be considered as a

realization of the random variable bk. We assume that those

variables are spatially independently distributed with distribution

pk(bk) such that

p Bð Þ ¼ Ckpk bkð Þ: ð6Þ

The prior pk(bk) is a probabilistic model that summarizes the

spatial properties of an individual source. In conventional

minimum-norm inverse models derived from Tikhonov and

Arsenin (1977), an individual source is assumed distributed

according to a Gaussian prior, an assumption which often produced

oversmoothing and, sometimes, unrealistic source configurations.

In our method, the prior encompasses both super-Gaussian sources

and a powerful class of Gibbs fields (Markov random fields) as

follows

pk bkð Þ ” exp �bf bkð Þf gsech2 bkð Þ; ð7Þ

where b is a scalar constant and f(bk) is a function of the

component topography (Chellappa and Jain, 1991). The distribu-

tion pk(bk) can be seen as measure of sparseness of the kth cortical

topography. McKeown et al. (1998) who introduced spatial ICA

for fMRI analyses once argued for the sparse nature of spatially

distributed patterns in typical cognitive activation paradigms. Some

prototypical confounds were also shown to be sparse and localized

such as vascular pulsation (i.e., signal localized to larger veins that

are moving as a result of cardiac pulsation; see Petersen et al., 2000

for an example). Therefore, imposing a sparse prior is likely well

suited for simultaneously source separating and imaging. Elements
of bk, the kth column of B, give the strength of density moments

over the cortical surface. Thus, the distribution of bk must have

nonzero strength at few regions and zeros elsewhere. Incorporating

this prior information reduces the number of estimated parameters

and speeds optimization in the resulting learning algorithm.

In addition to using a sparse prior, the f(bk) function may be

explicitly defined to capture the assumed statistical properties of

the spatial source densities. In particular, source current densities

may be assumed to be composed of smooth patches possibly

separated by discontinuities (Geman and Geman, 1988; Baillet and

Garnero, 1997). By taking into account these assumptions, the

posterior likelihood becomes

p Bjx tð Þ; L
� �

e Ckpk bkð Þ
1

det LBð ÞCkpk u
tð Þ
k

� �
: ð8Þ

In batch learning of the cortical source topographies, B, a small

fraction of the data set of block size s is passed through the

learning rule at each iteration. With this in mind, the posterior

likelihood must be the product of Eq. (8) over the learning blocks

of the data set. Thus, the posterior log-likelihood becomes

l ¼ s~j;k log pk bjk
� �

� slog det LBð Þ þ ~k;tlog pk u
tð Þ
k

� �
: ð9Þ

To find the maximum of this log-likelihood, we take its gradient

with respect to B

Bl

BB
¼ s/ Bð Þ � sLT LBð Þ�T � LT LBð Þ�Tu Uð ÞUT ; ð10Þ

where U = [u(1), . . . , u(s)], /(B) Z RJ � K, and u(U) Z RK � s

are matrices with scores /(bjk) = fllog pk(bjk)/flbjk and u(uk
(t)) =

fllog pk(uk
(t))/fluk

(t) respectively. Using the natural gradient tech-

nique (Amari, 1998), the resulting gradient decent algorithm can be

multiplied by BBT to avoid computing matrix inversion:

DB ¼ B BT/ Bð Þ � I � 1=sð Þu Uð ÞUT
� �

: ð11Þ

The posterior likelihood in Eq. (8) has spatial and temporal priors

in the first and last terms. Note that the spatial term, BT/(B), is

symmetrically opposed to the temporal term, u(U)UT.

The cortical map of each EMSICA component may be

described as a column in B, that is, bk containing one value for

each tessellation element. Negative values of bjk indicate that the

tessellation element is oriented inward to the local orientation of

the cortical surface. To find and display vertices strongly active in a

particular EMSICA component map, the map values are normal-

ized to z scores for visualization. Dividing the dipole strength

estimate for each tessellation element by the standard error of the

estimate, we obtain a normalized dipole strength zjk that is t

distributed under the null hypothesis of no dipole activity. Regions

of activation whose absolute z scores are greater than some

threshold (e.g., | z | > 2.0 in our empirical study) can be considered

strongly active and thus color-coded in the EMSICA component

cortical map.

Prewhitening EEG records

Preprocessing EEG signals before statistical analysis or source

localization are often a useful step in ERP studies (Baillet et al.,

2001b). In ICA applications, the observed data are modeled as x(t) =

W�1s(t), where W is a matrix of projection weights and s(t)
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contains component scores or activations. Observed x(t) are

normally preprocessed using the data sphering matrix U�1/2

(i.e., x̃(t) = U�1/2x(t)), where U is the variance–covariance matrix

of the observed data x (Note: The rescaled EEG signals, pre-

multiplied by the estimated W, can be applied directly to obtain

the least squares estimate of the component scores, that is, ŝ(t) =

ŴU�1/2x(t)). The data can also be prewhitened by removing

machine/physiological artifacts and possible noise, that is, x̃(t) =

K�1/2PVx(t), where K is an I � I diagonal eigenvalue matrix with

only K < I nonzero values in the diagonal and, P, the orthogonal

projection matrix (i.e., the eigenvector matrix). Let x̃(t) be

preprocessed data using either U�1/2 or K�1/2PV. The model in

Eq. (2) can be rewritten as x̃(t) = L̃Bs(t), where L̃ = U�1/2L or L̃ =

K�1/2PVL. Using prewhitened data allows estimation of a reduced

number of spatiotemporal components. The EMSICA learning

algorithm in Eq. (11) then can be applied to estimating B Z

RJ � K by replacing L with L̃ and x(t) with x̃(t).

Comparison between ICA and EMSICA

In the standard ICA model, each column of W�1 summarizes

the relative projection strengths of a source component at the

individual EEG scalp sensors. In the EMSICA model, each column

of B represents a spatial map describing the topography of

synchronous activity on the cortical surface that contributes to

the component signal recorded on the scalp. Columns of A = LB

give the same information as the W�1 matrix in ICA. A detailed

comparison between ICA and EMSICA is illustrated in Fig. 1. In

applications, we may visualize the cortical source maps, scalp

topographies (A = LB), and time/frequency plots for the estimated

sources when interpreting the functional nature of brain-related

sources.
Empirical application of EMSICA

Subjects and cognitive tasks

EMSICA was applied to results of neuropsychological exper-

iment using a Ftwo-back_ visual working memory task. Subjects

participated in four N-minute bouts in which a series of single

letters A, B, or C were presented at the screen center. Subjects were

required to respond whenever a presented letter matched the letter

presented just before the preceding stimulus (i.e., the letter Ftwo-
back_). Letter-to-letter stimulus-onset asynchrony was approxi-

mately 1816 ms. Subjects were instructed to press either a ‘‘Yes’’ or

a ‘‘No’’ key by 934 ms after each letter onset, when an auditory

feedback tone was given to indicate whether the answer was right

(Fbeep_) or wrong (Fbuzz_).
In each trial, subjects thus had to read the letter presented,

decide whether it was identical in name to the letter presented two-

back in the sequence, retain the previous one-back letter in

memory, and remember the current letter for later comparison

(while also Fforgetting_ the two-back letter). We recorded EEG and

behavioral data (response times and choices) from 71 electrode

sites, 69 placed at locations based on a modified International 10–

20 System montage, 1 placed below the right eye (VEOG), and 1

placed at the left outer canthus (HEOG). All 71 channels were

referred to the right mastoid and were digitally sampled for

analysis at 256 Hz with a 0.01 to 100 Hz analog bandpass followed

by a 50-Hz low-pass digital filter.
Head and source model

The leadfield matrix L in Eq. (1) was calculated with a four-

shell realistic head model using the boundary element method

(BEM) (de Munck, 1992; Oostendorp and van Oosterom, 1989).

To facilitate recovery of deeper sources, the leadfield was

multiplied by a diagonal scaling matrix for column normalization

(Pascual-Marqui et al., 1994). It was then necessary to rescale the

estimated source contribution matrix B in Eq. (11) afterward.

Forward model computation requires knowing the locations of all

possible sources, the sensor locations, the compartment boundaries

between brain and CSF (likewise, between CSF and skull, skull

and scalp, scalp and air), and the relative conductivities of each of

the model compartments. We assumed homogeneous isotropic

conductivities of 0.33, 1, 0.0042, and 0.33 (V�1 m�1) for brain,

CSF, skull, and scalp, respectively (Mosher et al., 1993).

The four volumes and their boundaries, required for computa-

tion of the forward solution, were automatically reconstructed from

a high-resolution T1-weighted structural MR image. The compart-

ment boundaries were each represented by 4000 vertices. In our

analysis, the solution space of all sources was restricted to be the

brain cortex. This improved computational efficiency and reduced

the degree of indeterminacy in the inverse problem.

Following segmentation of the cortical surface, the skull, scalp,

and cortical surface were tessellated using about 40,000 vertices. In

the inverse computation, the solution space comprised approxi-

mately 3000 points normal to the local cortical surface, each

representing approximately 15 mm2 (¨4 mm � mm) of the cortex.

The EEG sensor locations were determined by a fast tracking

digitizer (Polhemus, Inc.) which were then coregistered and

projected onto the modeled scalp.

The super-Gaussian temporal probability density in Eq. (5) was

given by

p u
tð Þ
k

� �
¼ g u

tð Þ
k

� �
1� g u

tð Þ
k

� �h i
; ð12Þ

where g(uk
(t)) is the logistic function,

g u
tð Þ
k

� �
¼ 1

1þ exp �u tð Þ
k

n o
;

ð13Þ

thus

u
ðtÞ
k

� �
¼ 1� 2g u

ðtÞ
k

� �
: ð14Þ

The topographic distribution function in Eq. (7) was f(bk) =

bkC
�1bk

T, where C�1 = WWT is the inverse spatial covariance of J

tessellation elements. The W matrix computes the first order

derivative of the spatial source distribution. Thus

u bjk
� �

¼ �2 b~jVrjjVbjVk � tanh bjk
� �h i

; ð15Þ

where rjjV denotes jjVth element of C�1.
Results

To evaluate the effectiveness of EMSICA, we compared the

dynamic properties of its resulting source components to those

obtained by the standard ICA. The data set consisted of 950

concatenated 2.5-s data trials time-locked to letter presentations;

EEG records were first decomposed using infomax ICA which



Fig. 1. Comparison of ICA and EMSICA. Infomax ICA (A) finds an un-mixing matrixW that maps the recorded signals to recovered component activities s(t) =

Wx(t). Component topographies are read from the columns of the mixing matrix A =W�1. These give the projections expected on the scalp if only a single ICA

spatiotemporal component was active. Identification of artifact components is possible from distinct properties of these components (Jung et al., 2000). The

proposed EMSICA decomposition (B) finds a matrix B of cortical maps using leadfield parameters that give their projections to the scalp sensors using a

biophysical model, s(t) = LBx(t). Thus, EMSICA separates EEG features into activities of fixed cortical maps rather than as activities of fixed scalp maps.
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exploited temporal independence for blind source separation. After

training, the resulting 71 components were ranked by amount of

total EEG variance accounted for and the twelve largest

components were selected for display in Fig. 2A. Next, the same

data set was analyzed by EMSICA. Ten of the 12 ICA components

turned out to have time courses and scalp projections similar to
Fig. 2. Maps of strong component pairs estimated using ICA and EMSICA. (A) S

corresponding components found by EMSICA. Left columns show the componen

their projections to the scalp sensors.
EMSICA components including those producing major parts of the

P300 or LPC feature of the average evoked response as well as

components accounting for somatomotor mu, frontal midline theta,

and central and lateral posterior alpha rhythms. The dynamic

properties of four nonartifact components are visualized in Figs.

3–6, each of which shows the scalp map, activity ERP image plot,
calp maps of 12 strong and near-dipolar infomax ICA components. (B) Ten

t cortical activation topographies obtained by EMSICA, right panels show



Fig. 3. A matching pair of ICA and EMSICA components projecting to the frontal midline, anterior cingulate, and premotor cortex. (A) From infomax ICA; (B)

from EMSICA. Both show a premotor theta response pattern. Upper row: left panels show the component scalp topographies; middle images, the ERP image

activity plots; right panels, frequency spectra. In the ERP image plots, color lines for individual trials are stacked on top of each other. The individual trials are

time-locked to the response (solid vertical line) and sorted by RT from stimulus onset (solid curve). The dashed vertical line denotes 934 ms after each letter

onset when an auditory feedback tone was given. The mean ERP component time course is shown beneath the ERP image. Readers are referred to Makeig et al.

(1999) and Jung et al. (2000) for more details. The lower row of the panel A shows single equivalent current dipole location for this ICA component, estimated

from the scalp map (upper left) and plotted on a mean MRI image (Montreal Neurological Institute) from three different perspectives (axial, sagittal, and

coronal views). The low residual variance (r.v.) for the dipole fit is shown. In the upper left panel and lower panels of B, the active region of the corresponding

EMSICA component cortical map is shown. Activation with a z score of 2 or greater is indexed by the color code. For ICA, component scalp maps are input

into a source localization algorithm to estimate their equivalent dipole location. For EMSICA, the cortical distributed source image and the spatiotemporal

separation are computed simultaneously.
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and activity spectrum associated with components. The lower row

of each figure shows the best-fitting single equivalent current

dipole location plus scalp and cortical maps for the ICA and

EMSICA components, respectively. Dipole locations were esti-

mated by submitting the corresponding column in the inverse

matrix obtained from infomax ICA to an automatic one or dual-
symmetric dipole source localization algorithm (DIPFIT, contrib-

uted by R. Oostenveld et al.) as was implemented in EEGLAB

(Delorme and Makeig, 2004); the dipole model was implemented

using a standard four-shell spherical head model with radii of 71,

72, 79, and 85 mm and the same source model conductivities used

in EMSICA. The residual variance (r.v.) (i.e., the amount of



Fig. 4. Independent components contributing to the post-response (P3b) positivity, located to central parietal and right frontal lobe by ICA (A) and EMSICA

(B), respectively. Panels as in Fig. 3. Frontal midline components often exhibit a 4–8 Hz theta band peak in their activity spectra during tasks requiring

concentration.
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residual variance in the component scalp map or sensor space

projection) not accounted for by the dipole model is shown on the

upper right corner of each dipole model panel.

The top left and lower panels of Figs. 3B–6B show EMSICA

component cortical maps found by assuming that a spatiotemporal

independent component accounts for synchronous activity within a

connected cortical domain. Conditions that require mental concen-

tration often induce midfrontal theta bursts in the EEG (Mizuki et

al., 1980; Gevins et al., 1997; Uchida et al., 2003; Onton et al.,

2005). The region is implicated by fMRI and neurophysiological

experiments as performance monitoring system, signaling the need

for a behavioral change to optimize action outcome (Ullsperger and

von Cramon, 2003; Rushworth et al., 2004). As shown in Fig. 3B,

EMSICA placed the principal cortical generator of the frontal

midline theta around the dorsal anterior cingulate, though the
cortical model was possibly not fine enough to model activity

within the anterior cingulate gyrus itself.

The EMSICA component in Fig. 4B has a central parietal

maximum and a right-scalp bias and makes a substantial

contribution to the slow postmotor P300 or P3b positivity

following target presentations. The P3b component is an endog-

enous, positive polarity component of the human ERP (Fabiani et

al., 1987) that occurred in this experiment a moment after the

motor command.

Fig. 5 shows an atypical left mu rhythm component (not

exhibiting the usual near 10-Hz/20-Hz spectral peak) located, in

the EMSICA model, over hand motor cortex and adjacent

postcentral somatosensory areas. The near 20-Hz peak in the

component power spectrum was strongly blocked following

movements (not shown). Before and after the button press, the



Fig. 5. Corresponding independent component processes found by ICA (A) and EMSICA (B), showing a polarity change above motor cortex on the left side of

the brain and an atypical broad 20-Hz spectral peak. Panels as in Fig. 3. The EMSICA component is active near hand premotor cortex and in the adjacent

precentral gyrus.
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component produces a brief theta band oscillation loosely time-

locked to the motor response (Makeig et al., 2004).

The prevailing topographies of alpha sources in this subject can

be seen in components 7, 8, and 9 in Fig. 2B. While multiple alpha

rhythms are separated by ICA (Makeig et al., 2002 and Fig. 2A),

EMSICA here separated their activities and identified their partly,

spatially overlapping cortical topographies based on the relative

spatiotemporal independence of their activity patterns in the

unaveraged data. Fig. 6 shows a posterior alpha component with

a distinct spectral peak near 10 Hz that is synchronously active

across areas in both hemispheres (possibly densely connected via

corpus callosum). Here, both single and bilateral equivalent current

dipole models of the corresponding ICA component (A) have

residual variances larger than 10%.
Discussion

A spatiotemporal ICA model proposed recently made similar

independence assumptions on the mixing matrix and time

components (stICA, Stone et al., 2002). It performs ICA both in

the temporal and spatial domain as defined by the mixing matrix.

However, this spatiotemporal ICA method used PCA to first

decompose the data set into spatial eigenimages and temporal

eigensequences. That is, given the first eigendecomposition on the

data set X = QDVV = (QD1/2) (D1/2VV) = Q̃ṼV where X is the data

matrix with the I sensors by total number of data points in the time

sequence; Q is an I � K matrix of K eigenimages with K � I; V is

a matrix of K eigensequences; likewise, D is a diagonal matrix of

its eigenvalues. The stICA approach embodies the assumption that



Fig. 6. Corresponding central posterior alpha components retrieved by ICA (A) and EMSICA (B) exhibiting a pattern of prolonged partial phase resetting

following auditory feedback (see ERP images, right vertical lines). The lower panel of A shows best-fitting single and bilateral equivalent current dipole

models, estimated from the ICA scalp map, that reveal possible difficulty of always characterizing ICA components as the projection of a single (or/and

bilateral) equivalent current dipole model. Here, residual variances of both single- and dual-dipole models were larger than 10%, and the corresponding

EMSICA component had a more complex active region.
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each eigenimage in Q̃ is a linear combination of K spatially

independent images, and each eigensequence in Ṽ is a linear

combination of K temporally independent sequences. The infomax
criterion is then applied to the eigenimages and eigensequences.

The EMSICA approach, on the other hand, does not depend on the

PCA-like method to decompose data sets. In a Bayesian
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framework, it yet permits a trade-off between a dual independence:

one for cortical source topographies and the other for source

activity time courses (the first and last terms in Eq. (11)).

Since high temporal resolution is the main advantage of EEG

and MEG imaging, use of information contained in those

unaveraged data can bring crucial help to source reconstruction

methods. The EMSICA algorithm fully uses information distrib-

uted throughout the entire EEG (or MEG) signals to separate and to

image cortical sources. However, it is important to point out some

remaining practical issues and questions. First, the use of an

approximate biophysical forward model derived from the MR

image adds a possible source of error to the infomax procedure.

Second, the effects of altering the algorithmic parameters, for

example, b and f(bk) in Eq. (7), need to be carefully examined

since the exact choice of the nonlinear form of the temporal and

spatial prior, p(s(t)) and p(B), respectively, may have considerable

and unknown consequences. During the time course of an

experiment, various artifact signals are introduced into the recorded

data such as eye blinks, eye movements, and other scalp muscle

activities. As shown in Fig. 1, EMSICA makes an explicit

assumption that there exist latent parameters, Bartifacts, in the

cortical domain B, such that artifact scalp topographies can be

recovered as Aartifacts = LBartifacts. Although this may be reasonable

from the mathematical point of view, it is likely that an

individualized volume conductor model containing additional

relevant compartments (i.e., eyeballs and head muscles) would

provide additional information for artifact separation and identifi-

cation. On the other hand, EMSICA might be applied to the data

subspace remaining after artifacts of non-cortical region, identified

by PCA or ICA, are first removed from the data.

When deriving the EMSICA approach, we assumed that I = K

to guarantee (LB) being a square matrix and sources can be

likewise estimated by u(t) K (LB)�1x(t). For a rectangular mixing

matrix, a possible approach for estimating sources can be

implemented by maximizing a posteriori value of u(t) for ûu tð Þ ¼
maxu tð Þ p u tð Þjx tð Þ; LB

� �
(e.g., see Lee et al., 1999 in details).

It is possible thatMonte Carlomodeling studies (Liu et al., 1998),

sampling over numerous possible source locations, sizes, and

orientations could be used to determine the theoretical and/or

effective limits of EMSICA accuracy. Also decomposing more data

sets, followed by advanced cortical activation component clustering

methods applied to decompositions frommore subjects, might allow

further validation of the effectiveness of the proposed method.
Conclusion

In this paper, an EMSICA decomposition using explicit and

implicit constraints (cortically constrained and spatiotemporally

independent sources with sparse priors) is proposed to attack the

indeterminate nature of the EEG source analysis problem. The

proposed method aims to separate the recorded mixture of EEG

features and artifacts into neurophysiologically and neuroanatomi-

cally meaningful components within a simple systematic learning

framework.

The Bayesian framework allows researchers to introduce a

priori information as to the possible locations of the generating

source domains by locally defining topography of relative dipole

strengths, which depend on discontinuity priors in cortical

activation topography according to anatomical and physiological

knowledge. If one had knowledge of the correlation of activity
between different sources, such information could be incorporated

to allow the imposition of a smoothness constraint on the inverse

solution, as in the LORETA approach (Pascual-Marqui et al.,

1994). In EMSICA, the magnitudes of the current in each

component are assumed to have a super-Gaussian instead of a

Gaussian distribution to address issues with spatially oversmooth-

ing and most likely unrealistic source configurations found by the

conventional minimum-norm approach.

The proposed method can be seen as an extension of

conventional infomax or maximum likelihood ICA. Compared to

PCA-like processing, EMSICA removes the constraint of orthog-

onality and forces components to be approximately independent

rather than simply uncorrelated. The estimated components may

potentially reflect accurately the spatially overlapping sources. Prior

knowledge of the leadfield matrix, sparseness of source distribu-

tions, and spatiotemporal independence are imposed in the

Bayesian framework, permitting a trade-off between prior knowl-

edge, mutual independence of spatial cortical maps, and mutual

independence of their corresponding time courses. While ICA finds

an un-mixing matrix that represents the component scalp top-

ographies, EMSICA finds a matrix of spatial maps that describe the

component regions of partially synchronous local field activity on

the modeled cortical surface. Both methods extract the dynamics of

macroscopic neuronal activities in the brain by analyzing collec-

tions of unaveraged event-related EEG epochs, thus revealing more

information about event-related brain dynamics than is likely

obtainable from post-processing of simple response averages.

The next step in this investigation will be to examine between-

subject spatiotemporal component stability by clustering EMSICA

components with similar activation power spectra and cortical

activation topographies. Recently, researchers have introduced the

dynamics of brain activation and synchronization phenomena with

high temporal resolution through ICA (Delorme et al., 2002). It

would also be interesting to investigate into repulsively coupled

clusters and those research findings on different ensembles of brain

sources coherent over short time intervals in an oscillatory fashion

proposed by Tass and Haken (1996) and Tass (1999). The proposed

EMSICA makes it possible to study event-related dynamics as well

as their time-varying coherence of these independent EEG sources

directly on brain topographies following the stimulus onset.
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