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Abstract: Inhibitory control is an integral part of executive functions. In this study, we report
event-related spectral perturbation (ERSP) results from 15 healthy adults performing an emotional
stop-signal task with the use of happy, disgusted, and neutral emotional faces. Our ERSP results at
the group level suggest that changes in low frequency oscillatory power for emotional and neutral
conditions start at as early as 200 ms after stimulus onset and 300 ms before button press for successful
go trials. To quantify the dynamics of trial-by-trial theta power, we applied the hierarchical drift
diffusion model to single-trial ERSP at the mid-frontal electrode site for the go condition. Hierarchical
drift diffusion modeling (HDDM) assigned higher frontal low-frequency oscillatory power for
evidence accumulation in emotional contexts as compared to a neutral setting. Our results provide
new evidence for dynamic modulation of sensory processing of go stimuli in inhibition and extend
our knowledge for processing of response inhibition in emotional contexts.

Keywords: event-related spectral perturbation (ERSP); theta; beta; response inhibition; stop signal;
hierarchical drift diffusion modeling (HDDM)

1. Introduction

Inhibitory control is a critical component of executive function measured in tasks where participants
typically have to inhibit a prepotent response [1]. It is best measured in the laboratory in the form of a
go/no-go task or stop-signal paradigm. In the stop-signal paradigm, participants make simple choice
decisions about a visual stimulus, but in some random trials, a signal is present after the stimulus,
indicating that the response is withheld. Behavioral measures of inhibitory control are calculated using
the stop-signal reaction time (SSRT), an index to measure how long it takes an individual to inhibit
a response.

A lot of studies have focused on mechanisms activated by the stop-stimulus, popularly referred
to as reactive inhibition [2]. Reactive inhibition deals with stopping of motor response which is already
in progress. A network of brain regions for this reactive inhibition (also commonly referred to as motor
inhibition) process recruits the right inferior frontal cortex (rIFC), the pre-supplementary motor area
(pre-SMA), and the subthalamic nucleus (STN) [3–5]. These brain regions are deemed to be activated
by the stop stimulus. A slow reaction time for the go stimulus enhances the likelihood of successful
inhibition for a particular trial, and sensory processes involved with the stop stimulus are mostly
assumed to influence reactive inhibition [6,7].
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Previous studies have shown that reaction times can be adjusted at a very short interval [8] and
could be probably related to the calculation of the trial-wise probability of coming across a stop signal
in a future trial [9]. Besides, experimental studies converge on the evidence that proactive and reactive
inhibition might recruit similar brain networks for inhibitory processing [5]. However, proactive
inhibition imparts a partial selective inhibition instead of a complete stopping [10,11]. A typical
assumption is that proactive and reactive inhibitory behavior is contingent on the accomplishment of
a vital response inhibition component [12]. However, formal modeling suggests that the enormous
proportion of time required to process response inhibition is engaged by sensory and motor processes
relating to the treatment of the stop stimulus [13–15] and recently published work has focused on
modifying inhibition burdens by adjusting for such kind of methods [16,17]. The speed-accuracy
tradeoff associated with fast decision making can be mathematically realized by an increasing or
decreasing decision threshold, that is, a measure which defines when the uninterrupted accumulation
of data concludes, and the option with the robust evidence is chosen [18,19]. The basal ganglia (BG)
regions are associated with neurobiological models of decision making underlying speed-accuracy
tradeoffs, due to their wide range of connections to cortical and subcortical areas engaged in movement-
and decision-related processes [20]. The BG exert tonic inhibition over cortical regions, which can be
diminished through stimulation of a direct pathway between the striatum with BG output areas or
amplified by triggering of two inhibitory circuits passing through the subthalamic nucleus [3], which
integrate to form the indirect and hyper-direct pathways [21].

While the involvement of sensory processes in response inhibition has received some attention [22],
there is a lot of support with respect to the role of early attentional processes in emotional
perceptual tasks [23] as well as their interaction [24]. Affective stimuli show prioritized perceptual
processing [3,25–27]. Previous reports on emotional content on response inhibition have mixed results,
with emotional stimuli having an improvement, hindrance, or no significant effect on the behavioral
performance of response inhibition. These variable results can be explained in part by the dual
competition framework [25]. This framework posits that emotion affects perceptual and executive
control. When an emotional stimulus is low in threat, then it improves task performance and promotes
goal-directed behavior. The perceptual process of the emotional stimuli attracts attention, thereby
improving executive control as referenced in response inhibition in terms of higher accuracy for no-go
trials [28] and shorter stop-signal reaction times [29,30]. On the other hand, when an emotional
stimulus is high in threat, it then impairs task performance and effects goal-directed behavior by
competing with executive control for attentional resources, as is evident from reduced accuracy for
no-go trials [31] and longer stop-signal reaction times [30,32].

Time-frequency analyses in the human scalp electroencephalogram (EEG) display a marker
of successful inhibition at frontocentral scalp locations, explicitly in the delta- (1–4 Hz) and theta-
(4–8 Hz) frequency bands [10,33–35]. A recent review on the topic of response inhibition found that
the current role of oscillatory processes involved in human EEGs is still ambiguous and requires
further understanding [36]. A common finding from no-go or stop trials is amplified theta and
delta oscillatory power during 200–600 ms post stop stimulus onset [34,37–39]. Intracranial EEG
recordings in the primary motor cortex (M1) and the right inferior frontal gyrus (IFG) have established
inhibition-related enhancement in beta oscillatory power [40], indicating another source of discrepancy
in the time-frequency domain, possibly causative of inhibitory processes. Finally, deep brain stimulation
(DBS) of the STN improves stopping behavior marked by the beta-band activity over the right
frontal cortex [41], providing support to the role of the fronto-basal-ganglia circuit in preventing an
initiated response.

Electrophysiological recordings of STN local field potential (LFP) and EEGs have revealed that
low frequency oscillatory (LFO) power activations during cognitive–motor tasks are primarily related
to prefrontal cortex (PFC) activity and PFC–STN connectivity [42–45]. Changes in cortical LFO power
were found to be localized mainly to medial PFC measured by scalp EEG in non-clinical subjects
performing a speed-accuracy tradeoff task [46]. A recent study revealed that trial-by -trial differences
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of Fz electrodes in LFO power measured using EEG were associated with the activity of medial PFC
measured using functional magnetic resonance imaging (fMRI) and that both signals were related
to an escalation in decision thresholds. These findings add to the growing literature of the role of
fronto-subthalamic circuits in decision making and modulations of the speed–accuracy trade-off [21,47].
The medial prefrontal cortex has structural connections to the STN via the indirect pathway and
the direct pathway [20,48,49]. The PFC heightens its influence over STN when task complexity
increases [50] leading to amplified decision thresholds to postpone the response [44,46]. Previous
studies accessing conflict using the Flanker task reported amplified STN LFO power in trials with
task-irrelevant stimuli compared to trials having task-relevant stimulus [51–53]. Response conflict
is associated with increased decision thresholds [54]; the reported decision threshold changes are
correlated to LFO modifications. However, it would be premature to conclude that LFO activity
recorded in exploratory EEG studies over the PFC would simply map to one precise mechanism, as
it has been shown previously to be not only modified by conflict but also several other processes
including emotional reactivity, punishment, novelty, error, memory, and learning [42,55].

We can define proactive inhibition by delayed response times in situations where outright
stopping (or reactive inhibitory control) might be required. A late response to go stimuli increases the
probability of successful stopping for any given trial, and these preparatory processes help in reactive
inhibition. Recent work in this domain has suggested the role of attentional processes influencing
go-stimulus processing [56–58]. Electroencephalographic (EEG) studies have provided evidence for
the inferoposterior N1 component (an index of selective attentional processing) being down-regulated
as response times were slower, but only when outright stopping was contextually relevant [57,58],
suggesting that proactive inhibition reflects attentional processes which are selective rather than being
related to global stopping, as measured by reactive inhibition which focusses on stop trials. Another
reason to focus on the go stimulus rather than on the stop stimulus is that performance in stop-signal
tasks is determined by other aspects of the decision process as well, including the level of caution in
responding and the speed of processing the go stimulus. These aspects cannot be measured by fixating
on stop trials only and measuring SSRTs from stop trials. To throw more light on these aspects of
decision making during response inhibition, we focused on the drift-diffusion model to tease apart
stop-signal task data into psychologically essential components.

The current study used EEG analyses to elucidate the role of frontal theta power in emotional
response inhibition. We concentrated on go trials and their association with the sensory processes
in the early time window and reaction time in emotional-stop (ES) and neutral-stop (NS) conditions
since medial frontal LFO power has been shown to contribute to elevated decision thresholds during
different decision-making processes. The swift sequential progression of go and stop stimuli is
particularly relevant here since this would prevent an exact emotional effect on stop stimuli without
concurrently also improving the visual processes involved with go stimuli presented at the identical
spatial position. In this study, we present a go stimulus and stop stimulus at the same spatial location
on the computer screen; it would impact the processing of affective stop stimuli when go stimuli are
also loaded with affect since the processing of the go stimulus is not complete when the stop stimulus
appears on the screen. The association between reaction time (RT) and inhibitory performance in a
drift-diffusion model has been demonstrated previously in a few studies [58–60]. Specifically, we were
intent to understand whether (1) evidence buildup would progress sooner in an emotional context,
and (2) medial frontal LFO/beta power modulated the trial-by-trial decision-making process for ES in
comparison with NS condition, which would be in line with a sensory process increase in response to
go stimuli. For the ES condition, we hypothesized two different sample of results: (1) The association
between trial-by-trial mid-frontal LFO/beta power and decision-making processes across ES conditions
would be more pronounced than across NS conditions; (2) The overall attentional escalations driven by
an emotional context [61–63] might engage medial frontal LFO/beta power to disrupt the association
between visual processes and the decision threshold. To test our specific hypotheses, we modeled
emotional stop-signal data as an evidence accumulation process to pick apart the perceptual decision
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making dimensions that are relevant for differentiating between the ES and NS conditions. In addition
to this, we modeled medial frontal theta and beta power variation in a trial-by-trial fashion in a
drift-diffusion model to tease apart emotional context influences on medial frontal theta or beta activity
on decision threshold.

2. Materials and Methods

2.1. Participants

Seventeen volunteers participated in this study. All participants were right-handed and had
normal vision with no history of psychiatric illness or mental disorder. All methods were carried
out following relevant guidelines and regulations with the Human Research Ethics Committee
IRB on Biomedical Science Research/IRB-BM Academia Sinica, Taiwan with the approval number
AS-IRB-BM-13058. None of the subjects claimed to have taken part in a similar study previously.
Participants received a base compensation of 500 New Taiwan Dollar (NTD) for their participation in
the study. A lot of artifacts in the EEG data led to the removal of two subjects from further analysis.
Visual inspection suggested that the subjects had greater than 50% bad epochs in their data. The age
range of the remaining 15 volunteers was between 21 and 38 years (eight male, seven female; mean:
29.875 years; SD: 5.31 years).

2.2. Experimental Design

We performed the experiment in a sound-insulated dimly lit chamber where participants were
asked to sit comfortably. We presented visual stimuli on a 24.4 × 18.3 cm computer monitor located
60 cm in front of them. The participants performed four sets of choice reaction tasks. The overall
experiment design followed A-A-A-A block design. The emotional stop-signal paradigm (ESSP) (see
Figure 1) employed in the current article had 168 trials per block divided into 120 go trials where the
participants had to respond and 48 Stop trials where participants had to refrain from response if they
observed a red border appear around the picture shown initially after 250 ms (stop-signal delay; SSD).
Each trial started with a fixation cross for 700 ms followed by emotional picture presentation for 500
ms and variable inter-trial interval (ITI) between 1.5 and 2.5 s. For the trials with go stimuli, subjects
had to press a button within 1 s of picture presentation identifying the type of face shown, that is,
disgusted, happy, or neutral. Accordingly, subjects had to press “Z”, “M”, or “Space Bar” buttons on
the keyboard for correctly identifying disgusted, happy, or neutral emotional faces. We adjusted the
latency of the red border around the picture presented following the participant’s task performance to
make the stop stimulus unpredictable. The participants were asked to respond as quickly as possible
and not to worry too much about stop trials. We set the initial stop signal (red border around the
picture) delay (SSD) to 250 ms. SSD was reduced by 50 ms on the subsequent stop trial if the participant
was unable to stop successfully in the current stop trial and increased by 50 ms on the following stop
trial if the participant was able to stop successfully in the ongoing stop trial (minimum SSD used
was 50 ms; maximum SSD used was 450 ms). We calculated the stop-signal reaction times (SSRTs)
by subtracting the mean of the SSDs from the median of the reaction times (RTs) on correct go trials
for each condition. We divided the trials equally among three emotional conditions—happy faces,
disgusted faces, and neutral faces. Thus, there were 160 go trials and 64 stop trials for each emotion
condition. The faces were carefully hand-picked from the NimStim face database [64], which has been
validated previously for emotion perception across various emotion types. We used a modified version
of ESSP from a previously published fMRI study [29]. All the images selected were grey-scaled to a
specific size (506 × 650 pixels; 96 dpi) and oval masked with a black background to avoid to impact of
brightness, color, and other facial effects. We did this to prevent biased stimulus-driven response for
subject’s choice response.
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Figure 1. The emotional stop-signal paradigm (ESSP) employed in the current study. Subjects were 
presented disgusted, happy, and neutral faces to which they were asked to press a relevant button as 
quickly as possible. On seeing the stop signal, subjects were asked to refrain from pressing a button. 

2.3. Recording and Analysis 

2.3.1. EEG Recording  

Electroencephalography (EEG) was recorded using 128 Ag/AgCl electrodes on the participant’s 
scalp (including six electrodes on the face) mounted on their head using a standard 10–20 system 
with a reference near the Cz electrode site. We controlled eye movements with the help of electrodes 
placed over and beside the eyes. Heart rate changes were accessed to be regressed out as covariates 
by placing one electrode over their index finger on both hands. We maintained electrode impedances 
below 20 kΩ and amplified signals using Neuroscan amplifiers with an analog bandpass of 0.1–100 
Hz. We recorded EEG data at a sampling frequency of 1000 Hz.  

2.3.2. EEG Analysis 

EEG data were then re-referenced offline to the average of all electrodes, excluding 
electrooculograph (EOG), electromyograph (EMG), and electrocardiograph (EKG) electrodes. We 
applied a high-pass FIR filter at 0.1 Hz (cutoff frequency at −6db was 0.05 Hz), and a low-pass FIR 
filter at 45 Hz (cutoff frequency at −6db was 50.612 Hz). We performed all EEG preprocessing by 
using EEGLAB toolbox version 14.1.2 [65] and Matlab R2016a. Stimulus-locked epochs were 
extracted with a time window of 1400 ms before stimulus onset to 1500 ms after stimulus onset, using 
the pre-stimulus period from −1400 to −800 ms as baseline correction. Baseline correction was emotion 
and condition-specific, that is, disgust, happy, and neutral trials from the go condition had their 
baseline particular to the precise emotion type. We did not use a common baseline for all states 
because we assumed that happy, disgust, and neutral trials would elicit specific temporal differences 
in their epochs. Blinks were removed using independent component analysis. We removed epochs 
with missed responses and double responses from further analysis. Automatic epoch rejection 
removed trials with values outside −/+ 150 mV. After all rejection procedures, an average of 95 percent 
of epochs remained for further analysis. The response-locked epochs were extracted from 2400 ms 
before button press to 1000 ms after the button press. The response-locked trials baseline was set from 

Figure 1. The emotional stop-signal paradigm (ESSP) employed in the current study. Subjects were
presented disgusted, happy, and neutral faces to which they were asked to press a relevant button as
quickly as possible. On seeing the stop signal, subjects were asked to refrain from pressing a button.

2.3. Recording and Analysis

2.3.1. EEG Recording

Electroencephalography (EEG) was recorded using 128 Ag/AgCl electrodes on the participant’s
scalp (including six electrodes on the face) mounted on their head using a standard 10–20 system
with a reference near the Cz electrode site. We controlled eye movements with the help of electrodes
placed over and beside the eyes. Heart rate changes were accessed to be regressed out as covariates by
placing one electrode over their index finger on both hands. We maintained electrode impedances
below 20 kΩ and amplified signals using Neuroscan amplifiers with an analog bandpass of 0.1–100 Hz.
We recorded EEG data at a sampling frequency of 1000 Hz.

2.3.2. EEG Analysis

EEG data were then re-referenced offline to the average of all electrodes, excluding
electrooculograph (EOG), electromyograph (EMG), and electrocardiograph (EKG) electrodes.
We applied a high-pass FIR filter at 0.1 Hz (cutoff frequency at −6 db was 0.05 Hz), and a low-pass
FIR filter at 45 Hz (cutoff frequency at −6 db was 50.612 Hz). We performed all EEG preprocessing by
using EEGLAB toolbox version 14.1.2 [65] and Matlab R2016a. Stimulus-locked epochs were extracted
with a time window of 1400 ms before stimulus onset to 1500 ms after stimulus onset, using the
pre-stimulus period from −1400 to −800 ms as baseline correction. Baseline correction was emotion and
condition-specific, that is, disgust, happy, and neutral trials from the go condition had their baseline
particular to the precise emotion type. We did not use a common baseline for all states because we
assumed that happy, disgust, and neutral trials would elicit specific temporal differences in their
epochs. Blinks were removed using independent component analysis. We removed epochs with
missed responses and double responses from further analysis. Automatic epoch rejection removed
trials with values outside −/+ 150 mV. After all rejection procedures, an average of 95 percent of epochs
remained for further analysis. The response-locked epochs were extracted from 2400 ms before button
press to 1000 ms after the button press. The response-locked trials baseline was set from −2400 to
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−1800 ms before the button press for disgust, happy, and neutral trials separately. Epoch rejection
procedure was similar to stimulus-locked epochs.

2.3.3. Group-Level Event-Related Spectral Perturbation (ERSP)

Event-related spectral perturbation (ERSP) analysis was used to look at theta frequency power at
the medial frontal electrode site. We used the std_precomp function in EEGLAB to calculate group-level
ERP and ERSP. We based our ERSP calculations on Fast Fourier transform (FFT) power spectrum of
single-trial EEG data with the FFT power spectrum of a set of complex Morlet wavelets and taking
the inverse FFT using newtimef function of EEGLAB. We computed ERSP-indices separately for every
subject and experimental condition. We used a fixed window size of 256 samples (256 ms) across 116
frequencies from 2.0 to 30.0 Hz in the linear scale. Time-frequency plots were baseline corrected from
−1400 to −800 ms before stimulus onset for stimulus-locked trials. We computed ERSP results for
low frequency oscillations (LFO; 2–6 Hz) and beta frequency oscillations (12–17 Hz) in an early time
window (200–350 ms for LFO power and 200–450 ms for beta power) owing to previous literature
deeming these time-frequency power values relevant for emotion and response inhibition. The 2–6 Hz
LFO frequency cluster was chosen instead of the delta and theta frequency band since we failed
to observe a clear lower boundary at 4 Hz [66,67] for theta frequency, as seen in previous studies
reporting motor conflict power changes in STN [43,51]. The experimental effect failed to demarcate
sharp boundaries for delta and theta frequency power, so we combined 2–6 Hz as the LFO frequency
cluster. The time windows were defined based on a priori knowledge of early sensory event-related
potential (ERP) components like P1 and N1 dominating perceptual processing before 200 ms [68].
The time windows chosen for the LFO and beta frequency band more likely reflects the processing of
emotion processing dominated by N2 or P3 ERP components [36]. For response-locked trials, baseline
correction was performed on −2400 to −1800 ms before the button press. We computed ERSP results
for LFO (2–6 Hz) and beta frequency oscillations (12–21 Hz) in the time window before button press
(−300 to 0 ms for theta power and −400 to 0 ms for beta power). These time windows were chosen to
reflect the accumulation of cognitive processes before a motor response. The response time ranges for
beta and LFO differ since beta decrease was observed to be more prominent than LFO increase in the
time post-stimulus presentation and preceding motor response. We had to adjust the time ranges based
on group ERSP results for better comparison between emotion and neutral conditions in our data.

2.3.4. Single-Trial ERSP

Single-trial ERSP was calculated using pop_newtimef function in EEGLAB. Average baseline power
was derived from −1400 to −800 ms before stimulus onset and subtracted from relevant trials to create
single-trial ERSP for LFO and beta oscillation separately for stimulus-locked trials. We obtained the
response-locked ERSP power by baseline correction of −2400 to −1800 ms before the button press.
The single-trial LFO and beta power were normalized by dividing their baseline value power in
each trial.

2.3.5. Hierarchical Drift Diffusion Model (HDDM) Analysis

We used hierarchical Bayesian estimation as implemented in HDDM package version 0.6.0 [69] to
look at trial by trial changes in parameters of the drift-diffusion model (DDM) defined formally by
Ratcliff and colleagues [19]. We used RTs from go trials as done in previous stop-signal articles [58–60,70]
in the DDM analysis across happy, disgust, and neutral conditions. In any trial, there were two possible
responses for successful or failed emotion recognition (here we are choosing accuracy coding where
1 means subject was successful in identifying the correct emotional facial expression, and 0 meant
the subject pressed incorrect button). We flipped error RTs to be negative. We used the deviance
information criterion [71] for model comparison. To gain a deeper understanding of how visual
affective information (disgust, happy, or neutral) affects choice RT (correct or incorrect emotion
recognition), we defined three separate models and varied three DDM parameters of interest across
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the three visual conditions: evidence accumulation (drift rate, v), level of response caution (response
threshold, a), and time needed for non-decision processes (non-decision time, t0). First, we inspect a
set of stimulus-varying models by varying two or more DDM parameters across different stimulus
conditions (Disgust stimulus, DS; Happy stimulus, HS; and Neutral stimulus, NS). Four models
were created by varying (1) response threshold and drift-rate parameters, (M1), (2) drift-rate and
non-decision times, (M2), (3) evidence accumulation and non-decision times, (M3), and (4) all three
DDM parameters together (M4). Next, we modeled behavior data as a regression model by expressing
DS and HS relative to NS condition. The regression model computed with behavioral data serves as a
baseline to aid in comparisons to the regression models calculated with neural data as described below.
Finally, we used two regression models to capture dynamics in frontal LFO and beta power varying
with trial-by-trial reaction time. We did this separately for both stimulus-locked and response-locked
trials. We estimated the regression coefficients between Fz activity decision thresholds in the same
model, which was further used to determine the decision-making parameters themselves. In a given
trial, we define the response threshold, a—

a = b0 + b1Stim + b2LFO + b3 LFO*Stim+ b4Betadecrease + b5Betadecrease*Stim, where Stim
refers to the type of stimulus (DS, HS, or NS), LFO indicates the post-stimulus/pre-response increase in
LFO, Betadecrease is the post-stimulus/pre-response decrease in beta power, and b1–5 are the estimated
regression coefficients.

For each model, HDDM obtains a sequence of samples, a Markov chain Monte Carlo (MCMC)
from the posterior of each parameter. In the current manuscript, we generated 10,000 samples from the
posteriors. To ensure that these MCMC samples come from a stationary distribution, we discarded the
first 2000 samples as “burn-in”. For further modeling details, please see [59,60]. To prevent outliers,
we discarded 5% of the data with the assumption that 5% of the data might not be generated by
DDM process but instead by attentional lapses. We plotted a histogram of all the trials considered for
HDDM analysis and found that RTs greater than 0.9 seconds and lower than 0.4 seconds constituted
about 5% of the trials. To justify our approach, the model fitting before and after removal of 5%
data is shown in Supplementary Figures S1–S3, respectively. We considered posterior probabilities
≥95% of the respective parameters being different than zero significant [44]. To compare different
models, we assessed the difference between their respective deviance information criterion (DIC)
values. Traditionally, DIC values >10 are considered as significant [44].

The HDDM code used to generate all these models is provided in the Supplementary Information
to aid in better understanding of the models used in the study.

3. Results

3.1. Behavioral Analysis

During the successful go condition, reaction times were increased for neutral trials relative to
happy (F(1, 14) = 20.022, p = 0.001, partial η2 = 0.589) but not disgust trials (p > 0.05) which is partially
in line with dual competition framework [25]; happy stimuli captured more attentional resources
relative to neutral stimuli. SSRT were increased for neutral trials relative to happy (F(1, 14) = 10.404,
p = 0.006, partial η2 = 0.426) but not disgust trials (p > 0.05) which showed that subjects were better at
inhibiting responses to happy stimuli relative to neutral stimuli [30]. We did not observe any significant
findings in percentage choice error rates and failed RTs concerning go trials across emotions. Besides,
the percentage of error rates in stop trials across happy and disgust emotion trials was not significantly
different from neutral emotion’ trials. Finally, reaction times of failed stop trials, that is, stop respond
times (SRTs) were faster than their corresponding go RTs but failed to reach significance for the disgust
(p > 0.05) and happy (p > 0.05) emotions. However, differences in SRT and go RTs were seen for the
neutral: (t(14) = 3.366, p = 0.005) emotion, which is in line with predictions made by race model [72].
We did not observe any effect of emotion on SRT, (p > 0.05). In this report, we did not test for differences
in happy versus disgust stimuli since we were interested in comparing stimuli loaded with affect with
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neutral stimuli. We used neutral stimulus condition as a baseline for comparing the effects of disgust
and happy emotion perception. All results in this report, therefore, focus on comparisons of happy
versus neutral stimuli and disgust versus neutral stimuli.

3.2. Group Level ERSP Results across Conditions

3.2.1. Stimulus-Locked ERSPs

We found a significant within-subject effect of emotion in go trials across LFO (F(2, 28) = 20.796,
p < 0.001, partial η2 = 0.598), and beta frequency (F(2, 28) = 9.822, p = 0.001, partial η2 = 0.412) power.
Looking deeper into the within-subject contrasts, the disgust emotion (F (1, 14) = 20.963, p < 0.001,
partial η2 = 0.600) and happy emotion were significantly different from neutral emotion (F(1, 14) =

20.689, p < 0.001, partial η2 = 0.596) in the LFO power. For the beta power, the disgust (F(1, 14) = 5.282,
p = 0.037, partial η2 = 0.274) as well happy emotions (F(1, 14) = 13.744, p = 0.002, partial η2 = 0.495)
were significantly different from the neutral emotion. The group ERSP results for successful go
conditions are shown in Figure 2. Emotional conditions were characterized by greater stimulus-locked
LFO power (2–6 Hz) synchronization approximately 200 ms after stimulus presentation relative to the
neutral condition at the midline frontal electrode site (“Fz”). We also observed greater beta power
(12–17 Hz) desynchronization in neutral conditions relative to emotional conditions approximately
200 ms after stimulus presentation at Fz electrode site. These results overlap with previous evidence
where frontal theta [73,74] and beta [74] power was shown to differentiate emotional stimuli activation
from neutral stimuli.

 

comparing the effects of disgust and happy emotion perception. All results in this report, therefore, 
focus on comparisons of happy versus neutral stimuli and disgust versus neutral stimuli. 

3.2. Group Level ERSP Results across Conditions 

3.2.1. Stimulus-Locked ERSPs 

We found a significant within-subject effect of emotion in go trials across LFO (F(2, 28) = 20.796, 
p < 0.001, partial η2 = 0.598), and beta frequency (F(2, 28) = 9.822, p = 0.001, partial η2 = 0.412) power. 
Looking deeper into the within-subject contrasts, the disgust emotion (F (1, 14) = 20.963, p < 0.001, 
partial η2 = 0.600) and happy emotion were significantly different from neutral emotion (F(1, 14) = 
20.689, p < 0.001, partial η2 = 0.596) in the LFO power. For the beta power, the disgust (F(1, 14) = 5.282, 
p = 0.037, partial η2 = 0.274) as well happy emotions (F(1, 14) = 13.744, p = 0.002, partial η2 = 0.495) were 
significantly different from the neutral emotion. The group ERSP results for successful go conditions 
are shown in Figure 2. Emotional conditions were characterized by greater stimulus-locked LFO 
power (2–6 Hz) synchronization approximately 200 ms after stimulus presentation relative to the 
neutral condition at the midline frontal electrode site (“Fz”). We also observed greater beta power 
(12–17 Hz) desynchronization in neutral conditions relative to emotional conditions approximately 
200 ms after stimulus presentation at Fz electrode site. These results overlap with previous evidence 
where frontal theta [73,74] and beta [74] power was shown to differentiate emotional stimuli 
activation from neutral stimuli. 

 

Figure 2. Event-related spectral perturbation (ERSP) associated with stimulus onset in the go 
condition. ERSP plot shows values averaged for the whole group (15 subjects) with insignificant 
masked reactions (green area) in decibels. Warm colors mean increase of power to the reference time 
interval; cold colors indicate a decrease. Left vertical lines represent the average time of the target 
stimulus onset. The dotted line is the target onset. ERSP-62 corresponds to channel number. Here, we 
used the midline frontal ‘Fz” electrode for ERSP analysis. 

3.2.2. Response Locked ERSPs 

We found a significant within-subject effect of emotion in go trials across LFO (F(2, 28) = 32.765, 
p <0.001, partial η2 = 0.701), and beta frequency (F(2, 28) = 5.956, p = 0.019, partial η2 = 0.298) power. 
Looking deeper into the within-subject contrasts, the disgust emotion (F(1, 14) = 32.802, p <0.001, 
partial η2 = 0.701) and happy emotion (F(1, 14) = 31.691, p <0.001, partial η2 = 0.694) were significantly 
different from the neutral emotion in the LFO power. For the beta power, happy emotion (F(1, 14) = 
6.191, p = 0.026, partial η2 = 0.307) was significantly different from the neutral emotion. Differences in 
beta power for disgust and neutral emotions failed to reach significance (p >0.05). We have shown the 

Figure 2. Event-related spectral perturbation (ERSP) associated with stimulus onset in the go condition.
ERSP plot shows values averaged for the whole group (15 subjects) with insignificant masked reactions
(green area) in decibels. Warm colors mean increase of power to the reference time interval; cold
colors indicate a decrease. Left vertical lines represent the average time of the target stimulus onset.
The dotted line is the target onset. ERSP-62 corresponds to channel number. Here, we used the midline
frontal ‘Fz” electrode for ERSP analysis.

3.2.2. Response Locked ERSPs

We found a significant within-subject effect of emotion in go trials across LFO (F(2, 28) = 32.765,
p < 0.001, partial η2 = 0.701), and beta frequency (F(2, 28) = 5.956, p = 0.019, partial η2 = 0.298) power.
Looking deeper into the within-subject contrasts, the disgust emotion (F(1, 14) = 32.802, p < 0.001,
partial η2 = 0.701) and happy emotion (F(1, 14) = 31.691, p < 0.001, partial η2 = 0.694) were significantly
different from the neutral emotion in the LFO power. For the beta power, happy emotion (F(1, 14) =

6.191, p = 0.026, partial η2 = 0.307) was significantly different from the neutral emotion. Differences
in beta power for disgust and neutral emotions failed to reach significance (p > 0.05). We have
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shown the group ERSP results for successful go condition in Figure 3. We characterized emotional
conditions by LFO power (2–6 Hz) synchronization approximately 300 ms before response relative
to the neutral condition at the Fz electrode site. We also observed greater beta power (12–21 Hz)
desynchronization in neutral conditions relative to emotional conditions approximately 400 ms before
response at the Fz electrode site. These results reinforce the role of response-locked theta and beta
power in emotional stimuli recognition. The previous study found increased response-locked STN
LFO power changes from 750 ms before response until response [45] for speed-accuracy trade-off

during perceptual decision-making. Together with our stimulus-locked power results, these results
could suggest that mPFC–STN transmit information in low frequency bands to support perceptual
decision making.
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Figure 3. Event-related spectral perturbation (ERSP) associated with the response-locked trials in the
go condition. The ERSP plot shows values averaged for the whole group (15 subjects) with insignificant
masked reactions (green area) in decibels. Warm colors mean increase of power to the reference time
interval; cold colors indicate a decrease. Left vertical lines represent the average time of the target
stimulus onset. The dotted line is the target onset. ERSP-62 corresponds to channel number. Here,
we used midline-frontal ‘Fz” electrode for ERSP analysis.

3.3. Exploring Trial-by-Trial Analysis of Correct Go Trials for Happy, Disgust and Neutral Conditions

The DIC values for the stimulus varying models are as follows (1) M1, (DIC: −10539.35), (2) M2,
(DIC: −10547.72), (3) M3, (DIC: −10522.79), and (4) M4, (DIC: −10536.35). M4 had the lowest DIC
value (best model) among the four models tested. However, M4 and M2 had comparable values
when we correlated drift rates with SSRT and Go trials RT data. Since RT from go trials and SSRTs
from stop trials were obtained by inspecting all the data as they are and not by comparing emotional
conditions to neutral stimuli, we will use the best stimulus-varying model for comparison with
behavioral data obtained from emotional response inhibition. These models assumed that different
stimulus conditions (DS, HS, and NS) are completely independent of each other. However, this may
not be true since a subject could perform well in emotional conditions relative to the neutral condition.
The posterior probability of drift rates, response threshold and non-decision time for disgust (100%
posterior probability) and happy (100% posterior probability) emotion were significantly different
from neutral emotion in the within-subject regression model. We have shown the results in Figure 4.
The DIC value for this within-subject regression model was −10318.81.
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3.4. Drift Diffusion Modeling with Behavioral Data

To ensure that the drift diffusion model accounted well for the data, we correlated drift
rates from happy, disgust, and neutral conditions obtained from the stimulus-varying model M3
defined in Section 3.3 with reaction times from go-trials and SSRTs from stop trials. The drift
rates for disgust, happy, and neutral stimuli are abbreviated as ‘v_subj_DS’, ‘v_subj_HS’, and
‘v_subj_NS’ respectively. The reaction times from go trials for disgust, happy, and neutral stimuli
are abbreviated as ‘disgust_go’, ‘happy_go’, and ‘neutral_go’ respectively. The SSRT from stop trials
for disgust, happy, and neutral stimuli are abbreviated as ‘disgust_stop_SSRT’, ‘happy_stop_SSRT’,
and ‘neutral_stop_SSRT’ respectively. We have displayed the results in Table 1. Significant correlations
of drift rate with SSRT and go-RT we see here are in line with previous stop-signal reports using
DDM [60]. The results show that go and stop processes partly overlap with each other, and drift rate
links these processes together when we consider response threshold and non-decision time parameters
in our model. However, in contrast to a previous report [60], the response threshold and non-decision
time parameters of our model were not significantly correlated with the drift rate for the emotional or
neutral condition.
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Table 1. Correlations between go-trial response times, stop-signal reaction time (SSRTs), and drift-rates.

disgust_go happy_go neutral_go disgust_stop_SSRT happy_stop_SSRT neutral_stop_SSRT v_subj_DS v_subj_HS v_subj_NS

disgust_go Pearson Correlation 1 0.980 ** 0.897 ** 0.604 * 0.545 * 0.361 −0.872 ** −0.924 ** −0.690 **

Significance 0.000 0.000 0.017 0.036 0.186 0.000 0.000 0.004

happy_go Pearson Correlation 0.980 ** 1 0.870 ** 0.600 * 0.587 * 0.336 −0.902 ** −0.960 ** −0.670 **

Significance. (2-tailed) 0.000 0.000 0.018 0.021 0.221 0.000 0.000 0.006

neutral_go Pearson Correlation 0.897 ** 0.870 ** 1 0.499 0.324 0.623 * −0.793 ** −0.774 ** −0.730 **

Significance. (2-tailed) 0.000 0.000 0.058 0.239 0.013 0.000 0.001 0.002

disgust_stop_SSRT Pearson Correlation 0.604 * 0.600 * 0.499 1 0.637 * 0.237 −0.555 * −0.576 * −0.435

Significance. (2-tailed) 0.017 0.018 0.058 0.011 0.395 0.032 0.025 0.105

happy_stop_SSRT Pearson Correlation 0.545 * 0.587 * 0.324 0.637 * 1 0.203 −0.583 * −0.625 * −0.306

Significance. (2-tailed) 0.036 0.021 0.239 0.011 0.469 0.023 0.013 0.268

neutral_stop_SSRT Pearson Correlation 0.361 0.336 0.623 * 0.237 0.203 1 −0.346 −0.213 −0.585 *

Significance. (2-tailed) 0.186 0.221 0.013 0.395 0.469 0.207 0.447 0.022

v_subj_DS Pearson Correlation −0.872 ** −0.902 ** −0.793 ** −0.555 * −0.583 * −0.346 1 0.937 ** 0.764 **

Significance. (2-0tailed) 0.000 0.000 0.000 0.032 0.023 0.207 0.000 0.001

v_subj_HS Pearson Correlation −0.924 ** −0.960 ** −0.774 ** −0.576 * −0.625 * −0.213 0.937 ** 1 0.667 **

Significance. (2-0tailed) 0.000 0.000 0.001 0.025 0.013 0.447 0.000 0.007

v_subj_NS Pearson Correlation −0.690 ** −0.670 ** −0.730 ** −0.435 −0.306 −0.585 * 0.764 ** 0.667 ** 1

Significance. (2-tailed) 0.004 0.006 0.002 0.105 0.268 0.022 0.001 0.007

** Correlation is significant at the 0.01 level (2-0tailed). * Correlation is significant at the 0.05 level (2-tailed).
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3.5. Exploring Trial-by-Trial Regression Analysis of ERSP Data with HDDM Parameters

3.5.1. Stimulus-Locked Trials

Next, we sought to compare if single-trial ERSP low frequency values in the early perceptual
time window (200–350 ms) could predict changes in emotional versus neutral stimulus conditions
across correct response trials in Go condition. Assuming that EEG LFO activity would be a predictor
for a decision threshold in more difficult trials relative to lower difficult trials, we coded emotional
stimuli (happy and disgust) as low difficult and neutral stimuli as high difficult. Effects of trial-to-trial
adaptations in frontal LFO were found to decrease the estimated decision threshold: the regression
coefficient was negative, and more than 99% of it was less than zero (Figure 5a). The result of low
versus high difficulty for emotional relative to neutral context showed that LFO was indeed driven
by emotion rather than a neutral setting which made the regression coefficient to be opposite to
the hypothesized direction. The posterior probability showed that the strength of this was highly
significant, which implied that frontal LFO was a significant predictor for emotional stimuli relative to
neutral stimuli for correct go response. We also tested the effect of trial by trial adaptations of beta
power in the early time window (200–450 ms) as a predictor for decision threshold. The assumption
here was opposite to LFO activity. We assumed that high conflict neutral conditions would drive trial
by trial beta power relative to low conflict emotional conditions. Effects of the trial-to-trial variations in
the frontal beta were found to increase the estimated decision threshold: the regression coefficient was
positive, and more than 92% of it was more than zero which implied that the frontal beta power was
a better predictor for neutral stimuli relative to emotional stimuli for correct go response. However,
the evidence was not significant. Previous reports on neural correlates of speed-accuracy tradeoff [44]
have focused on an STN LFO power increase rather than beta power decrease. Our results point to a
similar pattern. The sensorimotor conflict is associated with theta and beta oscillatory power in the
STN [52]. Since our task involves emotions and response inhibition, we can classify our emotional
response inhibition as a sensorimotor conflict task. However, we could not capture the trial-by-trial
changes by beta oscillatory power but only by LFO power in the medial frontal cortex.

We also modeled trial by trial changes in oscillatory power concerning variations in the stimulus.
The model DIC value was lower (DIC: −10323.1928) than the model accounting for difficulty (DIC:
−10294.1697), where we had grouped the happy and disgust emotions together. No other drift diffusion
model parameters were varied in the two models to make model comparisons by based on the DIC
values easier. Frontal LFO was a significant predictor for evidence accumulation for happy (100%
posterior probability) as well as disgust (98% posterior probability) emotions in comparison to neutral
trials (Figure 5c). The frontal beta decrease was not a significant predictor for the disgust (53% posterior
probability) emotion or the happy emotion (59% posterior probability) in comparison to neutral trials.
Contrary to previous report associating beta and theta oscillations to sensorimotor conflict, we did not
find any evidence for a frontal beta decrease in ESSP. However, frontal LFO was related to emotional
inhibition consistent with our hypothesis. Modeling emotional categories separately better explained
the data as evident by lower DIC value.
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Figure 5. Single-trial ERSP associated with low frequency oscillatory (LFO) power for (a,c)
stimulus-locked trials (b,d) response-locked trials. In the top two figures (a,b), posterior probability
density reflects the decision threshold increase for emotional relative to neutral context. In the bottom
two figures (c,d), posterior probability density reflects the decision threshold increase for the happy and
disgust emotions relative to the neutral emotion. Here, “a_ersp_LFO (Neutral >Emotional)” represents
the effect of trial to trial variations in medial frontal LFO for neutral condition relative to emotional
condition while “a_ersp_LFO (DS >NS)” and “a_ersp_LFO (HS >NS)” represents the effect of trial to
trial variations in medial frontal LFO for the disgust emotion relative to the neutral emotion and the
happy emotion relative to neutral emotion respectively.

3.5.2. Response-Locked Trials

The model DIC value for stimulus-varying model (DIC: −10322.6942) was again lower than the
difficulty modifying the model (DIC:−10286.0273). Frontal LFO was a significant predictor for evidence
accumulation for emotional context relative to a neutral setting (100% posterior probability). We can see
the results of difficulty varying model here (Figure 5b). We can see the results of the stimulus-varying
model here (Figure 5d). Frontal LFO was a significant predictor for evidence accumulation for the
happy (100% posterior probability) and disgust (99% posterior probability) emotions in comparison
to neutral trials. The frontal beta decrease was a significant predictor for the disgust (96% posterior
probability) emotion but not for the happy emotion (94% posterior probability) in comparison to
neutral trials. Similar to the stimulus-locked condition, the response-locked condition also showed
better model fit for separate emotional categories rather than emotions combined. Frontal LFO was
deemed to be a significant predictor for both the happy and disgust stimuli. Interestingly, we found
evidence in support of sensorimotor conflict in beta power decrease as well. However, we saw this
effect for only disgust stimuli and not happy stimuli. We would guess that disgust stimuli drive
beta power decrease rather than happy stimuli does when compared against neutral stimuli. Dual
competition framework [23,25] postulates that negative emotion captures attentional resources than
positive emotion. We would argue that this would lead frontal beta decrease to be a significant predictor
for disgust stimuli relative to neutral stimuli and not for happy stimuli relative to neutral stimuli.



Brain Sci. 2019, 9, 271 14 of 19

4. Discussion

The current EEG study investigated how bottom-up sensory processes associated with emotional
faces interact with top-down goal-driven inhibitory control and decision-making process. We found
that emotional faces effect suppression of response as well as the equilibrium to respond swiftly and
correctly. The behavioral data indicated that happy emotion trials were associated with slower reaction
times and more efficient inhibition times as compared to neutral trials. Based on an alternate approach
focused on decision components calculated from go trials, we observed a strong relationship between
drift rate values, a proxy for the strength or speed of go processing and SSRTs, the behavioral proxy
for efficient stopping. The findings from the current study try to link decision making components
derived from go stimuli to stop trials. Our preliminary results suggest that stopping processes are
directly related to the speed of responding to go stimulus, that is, slower the speed of responding to go
stimuli reflects better stopping. Suppression of correct responses associated with stop trials was faster
in the happy stimuli condition [75]. On a more general level, these results suggest that when emotional
visual evidence is processed more quickly while neutral processes require additional processing time
across go response and the inclination to stop a correct response. Our behavioral results as measured
by RT data and SSRT did not support dual competition framework which postulates that negative
affect should capture additional attentional resources as compared to neutral condition and this effect
is obtained by faster RT and shorter SSRT for the disgust emotion relative to the neutral emotion.
We believe that this could due to subjects not perceiving disgusted emotional faces as more different
to neutral faces since faces were presented in a randomized fashion very quickly. We discuss the
discrepancies of this effect in our analysis of neural data as measured by LFO and beta power.

The second goal of this study was to determine whether mid-frontal LFO and beta power
changes were being modulated by visual affect in a trial by trial manner. Previous studies have
demonstrated ERSP changes in delta and theta frequency for an early perceptual window in emotional
relative to neutral conditions. We replicated the finding in our current study across go trials at
the group level. Our present results add on to the literature that mid-frontal LFO contributes to
response inhibition under emotional context for stimulus-locked trials as well as response-locked trials.
Previous studies have reported enhanced delta and theta power for emotional conditions relative to
the neutral condition [76,77]. Disgust and happy stimuli attract more attentional resources than neutral
stimuli consistent with a previous report of an emotional go/no-go task using emotional stimuli [78].
The authors had shown that P2 ERP component helped distinguish disgust and neutral stimuli.
A recent report looked at individual differences in emotion processing using HDDM. They concluded
that “emotion effects of the tasks differed with a processing advantage for happy followed by neutral
words in the lexical decision task and a processing advantage for neutral followed by happy and fearful
faces in the gender categorization task” [79]. These results are similar to what we found in our ESSP
using HDDM.

The role of frontal LFO in emotion recognition [73] and response inhibition [80] has been well
studied in isolation but not so well as in conjunction, which is in emotional response inhibition.
We took an alternate approach here to study mid-frontal LFO in go-trials rather than in stop trials as
done in the literature. Mid-frontal LFO was greater for emotional relative to neutral condition for
stimulus-locked trials. However, we observed the reverse trend for response locked trials. The response
threshold parameter in our regression analysis supported this result showing that emotional and
neutral trials could be distinguished well in ESSP. When we modeled the happy and disgusted
emotions separately, we found that medial frontal LFO was a significant predictor for stimulus-locked
as well as response-locked trials. Thus, medial frontal LFO modulated the trial-by-trial activity of
ESSP in a context-dependent manner. Beta desynchronization modulated trial by trial activity in
response-locked trials for disgust but not in the happy emotion. This provides new information
that mid-frontal LFO and beta oscillations can predict evidence accumulation before the response in
disgust emotion. Recent studies looking at N1 amplitudes and reaction times from go-trials in the
stop-signal task have deemed changes in sensory N1 component as proactive stopping rather than
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reactive stopping [58]. The response-slowing phenomenon associated with emotional compared to
neutral trials in the current study could also be an indicator of proactive inhibition. However, it is
unlikely to classify our task as reactive and proactive inhibitory control since there was an interaction
of sensory and inhibition processes. So, we will not speculate about the form of the stopping process
involved in our ESSP. We suppose that interaction between proactive and reactive stopping processes
eventually lead to inhibitory control in ESSP. Future studies using invasive intracranial electrodes or
deep brain stimulation (DBS) could explore the role of proactive and reactive control in ESSP better as
it is beyond the scope of scalp EEG.

HDDM revealed behavioral differences between the disgust and happy emotions relative to neutral
emotion concerning increase in drift rates, response threshold, and non-decision times. We suggest
that emotion context improves evidence accumulation, level of response caution, and time required for
non-decision processes. More importantly, the addition of neural data to HDDM improved the model
fitting for stimulus-locked as well as response-locked trials. We suggest that mid-frontal LFO power
predicts decision thresholds in response inhibition under emotional context. The role of mPFC theta in
cognitive control is not a new result in itself. To the best of our knowledge, this is the first study using
HDDM in emotional inhibition task to study the role of mPFC in emotional inhibition. The role of beta
power in right frontal cortex has been found mainly in DBS and intracranial EEG studies on response
inhibition and not much in scalp based EEG study like the current study. While we did not see the
frontal beta decrease to be a significant predictor for emotion recognition in this study, it is hard to
eliminate its role in emotional inhibition. Future studies might look at frontal beta and theta power
simultaneously in larger samples to explore their role in emotional inhibition.

HDDM is not the only existing modeling framework to perform hierarchical parameter estimation
based on Bayesian statistics. A recent paper highlights an attractive complementary approach for
performing Bayesian hierarchical parameter estimation [81]. Heathcote et al. provide an excellent
framework to account for attention failures and choice errors in stop-signal data. Their framework
complements the approach taken by HDDM. The dynamic models of choice (DMC) provide various
criticisms with respect to standard methods accepted by HDDM. Both the tools are open-source and
free to download (HDDM works on python code and DMC on R code). However, DMC is not a
one-step solution to cognitive modeling. The authors themselves highlight their approach as being
quite demanding for the user. We believe that HDDM provides models which are relatively easy to use
and interpret while the DMC is for users who want greater control of their model estimates with a
more hands-on approach.

The current study does have a few limitations which must be kept in mind for future studies
looking to replicate these effects in EEG data. Subjects were asked to perceive emotional faces as
disgust, happy, or neutral in a short time without perhaps leading them to proper emotional recognition
of the visual stimuli as done in several studies. Besides, we had a small sample size of 15 subjects.
Future studies should look to improve on the sample size and try to replicate our findings. Lastly,
we only focused on disgusted and happy faces. Thus, our study is not generalizable to emotional face
perception measured by other facial expressions like anger, surprise, etcetera.

5. Conclusions

The current manuscript provides new evidence for dynamic modulation of sensory processing of go
stimuli in response inhibition in emotional contexts using single-trial ERSP analysis. We characterized
emotional go trials by higher LFO power relative to neutral go trials. We believe our work is in line with
other work done on go trials exploring response inhibition. In emotional contexts, higher LFO power
and lower beta power led to successful go responses. We also verified the results with drift-diffusion
parameters which correlated well with behavior as well as neural data. Proactive stopping under
emotional context in response inhibition could be useful for understanding patient populations with
defective proactive response inhibition like Attention-deficit/hyperactivity disorder (ADHD) since their
treatment also focusses on fronto–subthalamic circuits similar to ones dictated by the current study.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/9/10/271/s1,
Figure S1: Model fitting accessed by plotting probability density distributions of condition-specific RT data for
disgust stimulus (DS): (a) data assumed to having no outliers (b) data assumed to having 5% outliers, Figure
S2: Model fitting accessed by plotting probability density distributions of condition-specific RT data for happy
stimulus (HS): (a) data assumed to having no outliers (b) data assumed to having 5% outliers, Figure S3: Model
fitting accessed by plotting probability density distributions of condition-specific RT data for neutral stimulus
(NS): (a) data assumed to having no outliers (b) data assumed to having 5% outliers.
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